Toggle light / dark theme

Scientists explored Human Accelerated Regions (HARs), genetic regulators that tweak existing genes rather than introducing new ones. Using cutting-edge techniques, they mapped nearly all HAR interactions, revealing their role in brain development and neurological disorders like autism and schizophrenia.

Decoding the Genetic Evolution of the Human Brain

A new Yale study offers a deeper understanding of the genetic changes that shaped human brain evolution and how this process differed from that of chimpanzees.

Scientists have just discovered the largest structure ever found in the universe, and it’s changing everything we thought we knew about space! Quipu, a superstructure spanning 1.3 billion light-years, is bending light, distorting cosmic expansion, and even affecting the Cosmic Microwave Background. What does this mean for our understanding of dark matter, energy, and galaxy evolution? Watch this video to explore Quipu’s secrets and their impact on the universe! 🚀✨ paper link: https://arxiv.org/abs/2501.19236 MUSIC TITLE : Starlight Harmonies MUSIC LINK : https://pixabay.com/music/pulses-starlight-harmonies-185900/ Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: https://www.facebook.com/nasaspacenews Twitter: https://twitter.com/SpacenewsNasa Join this channel to get access to these perks: https://www.youtube.com/channel/UCEuhsgmcQRbtfiz8KMfYwIQ/join #NSN #NASA #Astronomy#SpaceDiscovery #Quipu #LargestStructure #Astronomy #Cosmos #BiggestThingInSpace #DarkMatter #GalaxyClusters #SpaceScience #NASA #Astrophysics #CosmicWeb #ScienceNews #MindBlowing #Intergalactic #BlackHoles #Physics #TimeAndSpace #Superstructure #Galaxies #Universe #Science #Exoplanets #MilkyWay #Astronomers #XrayMapping #SpaceTech #BeyondTheStars #FutureOfSpace #CosmicEvolution …

A study published in the Journal of Cosmology and Astroparticle Physics (JCAP) presents a methodology to test the assumption of cosmic homogeneity and isotropy, known as the Cosmological Principle, by leveraging weak gravitational lensing—a light distortion effect described by general relativity—in astronomical images collected by new observatories such as the Euclid Space Telescope. Finding evidence of anomalies in the Cosmological Principle could have profound implications for our current understanding of the universe.

“The Cosmological Principle is like an ultimate kind of statement of humility,” explains James Adam, astrophysicist at the University of the Western Cape, Cape Town, South Africa, and lead author of the new paper. According to the Cosmological Principle, not only are we not at the center of the universe, but a true center does not exist.

A further assumption, similar to but distinct and independent from homogeneity, is that the universe is also isotropic, meaning it has no preferred directions. These assumptions underlie the Standard Model of Cosmology, the theoretical framework used to explain the origin, evolution, and current state of the universe. It is currently the most robust and consistent model, verified by numerous scientific observations, though not yet perfect.

The Last Evolution, SF Audiobook, Science Fiction by John W. Campbell Jr.

I am the last of my type existing today in all the Solar System. I, too, am the last existing who, in memory, sees the struggle for this System, and in memory I am.

The Last Evolution by John W. Campbell, Jr.

Please subscribe my channel.

Chapter One of the Science Fiction classic that inspired the movie THE THING. Narration by Oscar nominated and Emmy winning Special Makeup Effects Artist.

Geologically, Mars is very reminiscent of the moon. But it also looks a lot like the Earth. It all depends on who you ask.

Current understanding of Mars’ evolution is based on spacecraft measurements and meteorite analysis. Those meteorites were ejected from Mars and traversed space before landing on Earth, where they were discovered primarily in African deserts and Antarctica. They come in two categories: shergottites and nakhlites. Each paints a distinctly different picture of Mars’ geologic history.

In a study published in the Proceedings of the National Academy of Sciences, LLNL researchers argue that samples retrieved from known locations on Mars by sample return missions could solve this conundrum.

What kinds of strange life forms might exist on exoplanets? Invest in your mind with Imprint. Go to https://imprintapp.com/V101-Fans to get a 7-day free trial and get 20% off an annual membership.

Scientists are uncovering bizarre exoplanets that challenge everything we know about habitability. From super-Earths with crushing gravity to tidally locked planets with scorching hot and frozen hemispheres, these extreme worlds could give rise to lifeforms unlike anything on Earth. In this video, we explore the scientific possibilities of extraterrestrial life—how gravity, atmosphere, and star types could shape truly alien evolution. Could we find snake-like creatures on high-gravity worlds, black-leaved plants around red dwarf stars, or ocean-dwelling bioluminescent life on Europa-like moons? The possibilities are endless, and the science is fascinating!

Writers credit:
Today’s script comes from the brilliant astronomy author: Colin Stuart.
Check out Colin’s weekly newsletter here:

Newsletter

Want to help me make videos? Buy me a coffee here
https://buymeacoffee.com/v101space.

Or join the community and become a V101 member or Patron Today
https://www.youtube.com/channel/UC_MTPqgFSm_8WUWaCHIfUgQ/join.
https://www.patreon.com/V101Science

And if you haven’t already, make sure to subscribe for much more to come! Subscribe — https://www.youtube.com/@UC_MTPqgFSm_8WUWaCHIfUgQ

Kavli IPMU Professor John Silverman said, “Vera Rubin provided the first evidence for dark matter using the rotation curves of nearby local galaxies. We’re using the same technique but now in the early Universe.”

Blue-shifted (towards researchers) and redshifted (away) gas show velocity changes in the galaxy. Unlike past studies, which showed less dark matter in the galaxy’s outskirts, their data shows a flat rotation curve, indicating that more dark matter is needed for high velocities.

These findings shed light on the relationship between dark matter and supermassive black holes, helping us understand galaxy evolution from the early Universe to today.

Low-cost Cu catalysts for the hydrogen evolution reaction (HER) can transform industrial water electrolysis, but pure Cu typically exhibits a negligible HER. Here, combining pulsed laser ablation and subsequent electroreduction, Cu nanotwins form that enable the HER at an overpotential of 301 mV, with 125 h of stable operation at a current density of 500 mA cm−2.

A new Yale study provides a fuller picture of the genetic changes that shaped the evolution of the human brain, and how the process differed from the evolution of chimpanzees.

For the study, published Jan. 30 in the journal Cell, researchers focused on a class of genetic switches known as Human Accelerated Regions (HARs), which regulate when, where, and at what level genes are expressed during evolution.

While past research theorized that HARs may act by controlling different genes in humans compared to chimpanzees, our closest primate relative, the new findings show that HARs fine-tune the expression of genes that are already shared between humans and chimpanzees, influencing how neurons are born, develop, and communicate with each other.

Uniquely human features of neocortical development and maturation are not only intriguing for their implications in human-specific cognitive abilities, but they are also vulnerable to dysregulation which could cause or contribute to distinctly human brain disorder pathophysiology. The human cerebral cortex is essential for both cognition and emotional processing and dysregulation of these processes of the cortex are associated with a wide range of brain disorders including schizophrenia (SZ), autism spectrum disorder (ASD), Parkinson’s disease (PD), and Alzheimer’s disease (AD) (Berman and Weinberger, 1991; Rubenstein, 2011; Xu et al., 2019). Much remains to be learned about the mechanisms governing cortical expansion and responses to pathogenesis between human and non-human primates (NHPs) (Otani et al., 2016). Understanding these differences could shed light on the underlying mechanisms responsible for human-specific brain disorders and lead to the identification of key targets for the development of effective therapies.

Subtle differences observed by comparing human neurodevelopment to that of our closest evolutionary relatives could reveal underlying mechanisms, including genomic or transcriptional differences, contributing to varied phenotypes (Pollen et al., 2019). Human-specific responses to pathogenesis might be elucidated in a similar manner; by comparing brain pathophysiology of humans to our non-human primate counterparts (Hof et al., 2004). Although rodent models have taught us much about basic mammalian brain development and disorders (Fernando and Robbins, 2011), comparing governing processes and responses to species more closely related to humans can reduce the number of variables allowing for the identification of specific mechanisms responsible for observed deviations. Studies analyzing induced pluripotent stem cells (iPSCs) derived from humans, chimpanzees, and bonobos (Pan paniscus) show large sets of differentially expressed genes between human and NHP iPSCs. Perhaps the most compelling differentially expressed genes are those related to increased long interspersed element-1 (LINE-1) mobility in chimpanzees and bonobos, which could have implications on the rates of genetic divergence among species, and alternative mechanisms of pluripotency maintenance in chimpanzees (Marchetto et al., 2013; Gallego Romero et al., 2015). Furthermore, when human and NHP iPSCs were differentiated to neurons, they displayed distinctive migratory patterns at the neural progenitor cell (NPC) stage followed by contrasting morphology and timing of maturation in neurons (Marchetto et al., 2019). Despite the ability of two-dimensional (2D) PSC-derived neural cultures to demonstrate basic organization and transcriptomic changes of early brain development (Yan et al., 2013), while retaining the genetic background of the somatic cells from which they are reprogrammed, they lack the ability to develop complex cytoarchitecture, recapitulate advanced spatiotemporal transcriptomics, and brain region interconnectivity (including migration and axon guidance) of ensuing primate brain development (Soldner and Jaenisch, 2019). Intricate cellular heterogeneity, complex architecture, and interconnectivity of neurodevelopment, in addition to pathogenic responses, could be observed by comparing human and NHP brain tissues; however, ethical concerns and the inaccessibility of pre-and postnatal primate brain tissues limits the feasibility of such studies.

While brain organoids might be a long way from forming or sharing thoughts with us, they could still teach us much about ourselves. Brain organoids are three-dimensional (3D), PSC-derived structures that display complex radial organization of expanding neuroepithelium following embedding in an extracellular matrix like Matrigel and can recapitulate some subsequent processes of neurodevelopment including neurogenesis, gliogenesis, synaptogenesis, heterogenous cytoarchitecture, cell and axon migration, myelination of axons, and spontaneously-active neuronal networks (Lancaster et al., 2013; Bagley et al., 2017; Birey et al., 2017; Quadrato et al., 2017; Xiang et al., 2017; Marton et al., 2019; Shaker et al., 2021). It is likely that all these features of neurodevelopment are governed by some degree of specifies-specific dynamics. Brain organoids can be generated from human and NHP PSCs and, since some pathways regulating neural induction and brain region specification are well conserved in primates, both unguided cerebral organoids and guided brain region specific organoids can be generated (Mora-Bermúdez et al., 2016; Field et al., 2019; Kanton et al., 2019). Additional protocols have been established for the derivation of brain region specific organoids from human PSCs (hPSCs), including dorsal forebrain, ventral forebrain, midbrain, thalamus, basal ganglia, cerebellum, and telencephalic organoids (Muguruma et al., 2015; Sakaguchi et al., 2015; Jo et al., 2016; Bagley et al., 2017; Birey et al., 2017; Watanabe et al., 2017; Xiang et al., 2017, 2019; Qian et al., 2018). With some modifications, these methods could prove to be successful in establishing brain region-specific organoids from a variety of NHP PSC lines allowing for the reproducible comparison of homogeneous, human-specific neurodevelopment and brain disorder pathophysiology in brain regions beyond the cortex.