Toggle light / dark theme

Deciphering Breast Cancer: Spatial and Molecular Insights into Tumor Evolution

In recognition of Breast Cancer Awareness Month, join us for a live webinar to uncover the complexity of tumor biology and the surprising resilience of normal tissue. This event will feature two expert-led presentations: one demonstrating how protein multiplexing and quantitative imaging uncover the hidden heterogeneity of breast tumors, and another examining how natural tissue remodeling can both suppress and influence oncogenic transformation. A live discussion and Q&A session will follow, giving you the opportunity to engage directly with leading researchers and gain valuable insights to improve cancer diagnosis, guide therapy decisions, and inform prevention strategies. All sessions will be available on demand, allowing flexible access for continued learning and engagement.

Featured Talks:

What goes up must come down: The ‘universal thermal performance curve’ that shackles evolution

Scientists from Trinity College Dublin have unearthed a universal thermal performance curve (UTPC) that seemingly applies to all species and dictates their responses to temperature change. This UTPC essentially shackles evolution as no species seem to have broken free from the constraints it imposes on how temperature affects performance.

All living things are affected by temperature, but the newly discovered UTPC unifies tens of thousands of seemingly different curves that explain how well species work at different temperatures. And not only does the UTPC seem to apply to all species, but also to all measures of their performance with regard to temperature variation—whether measuring lizards running on a treadmill, sharks swimming in the ocean, or recording cell division rates in bacteria.

Crucially, the new UTPC shows that as all organisms warm, performance slowly increases until they reach an optimum (where performance is greatest), but then, with further warming, performance quickly declines.

Planet formation depends on when it happens: New model shows why

A new study led by UNLV scientists sheds light on how planets, including Earth, formed in our galaxy—and why the life and death of nearby stars are an important piece of the puzzle.

In a paper published in the Astrophysical Journal Letters, researchers at UNLV, in collaboration with scientists from the Open University of Israel, for the first time, modeled details about how the timing of planet formation in the history of the galaxy affects planetary composition and density. The paper is titled “Effect of Galactic Chemical Evolution on Exoplanet Properties.”

“Materials that go into making planets are formed inside of stars that have different lifetimes,” says Jason Steffen, associate professor with the UNLV Department of Physics and Astronomy and the paper’s lead author.

Genome-Wide Variation Profile of the Genus Tobamovirus

The genus Tobamovirus belongs to the family Virgaviridae, and the genome consists of monopartite, positive, single-strand RNA. Most species contain four open reading frames encoding four essential proteins. Transmission occurs primarily through mechanical contact between plants, and in some cases, via seed dispersal. Tobamovirus fructirugosum (tomato brown rugose fruit virus, ToBRFV), the most recently described species in the genus, was first reported in 2015. It overcame genetic resistance that had been effective in tomato for sixty years, causing devastating losses in tomato production worldwide, and highlights the importance of understanding Tobamovirus genomic variation and evolution. In this study, we measured and characterized nucleotide variation for the entire genome and for all species in the genus Tobamovirus.

A new attempt to explain the accelerated expansion of the universe

Why is the universe expanding at an ever-increasing rate? This is one of the most exciting yet unresolved questions in modern physics. Because it cannot be fully answered using our current physical worldview, researchers assume the existence of a mysterious “dark energy.” However, its origin remains unclear to this day.

An international research team from the Center for Applied Space Technology and Microgravity (ZARM) at the University of Bremen and the Transylvanian University of Brașov in Romania has come to the conclusion that the expansion of the universe can be explained—at least in part—without dark energy.

In physics, the evolution of the universe has so far been described by the and the so-called Friedmann equations. However, in order to explain the observed expansion of the universe on this basis, an additional “dark energy term” must be manually added to the equations.

Gaia provides a deep look into the galactic open cluster NGC 2506

Using ESA’s Gaia satellite and NASA’s Transiting Exoplanet Survey Satellite (TESS), astronomers from the Ege University in Turkey and elsewhere have observed a galactic open cluster known as NGC 2506. Results of the observational campaign, published October 7 on the arXiv pre-print server, put more constraints on the properties of this cluster.

In general, groups of stars formed from the same giant molecular cloud and loosely gravitationally bound to each other are known as open clusters (OCs). Inspecting galactic OCs in detail could be crucial for improving our understanding of the formation and evolution of our Milky Way galaxy.

NGC 2,506 is a mildly-elongated OC estimated to be located some 12,700 light years away, near the galactic anti-center. It is a well-populated, metal-poor, intermediate-age cluster with a radius of about 18.5 light years.

SCP-3812: The Entity That Broke Reality | The Science of a God Who Knows It’s Fiction

What happens when awareness grows too powerful for the universe that contains it?

SCP-3812 — also known as A Voice Behind Me — is the Foundation’s ultimate paradox: a being that rewrites existence every time it tries to understand itself. This speculative science essay explores the physics, metaphysics, and philosophy behind the phenomenon. From quantum observer effects to pancomputational cosmology, from the breakdown of time to the collapse of narrative itself, we ask the ultimate question:

What if consciousness doesn’t live inside reality, but creates it?

Join us as we explore:

- The origin of Sam Howell and post-mortem evolution of awareness.
- The science of unreality and the hierarchy of dimensions.
- Schizophrenia as multiversal cognition.
- Supersession, recursion, and the limits of containment.
- The final collapse of reality into pure perception.

If you love speculative science, existential philosophy, or cosmic horror wrapped in logic, this video will change the way you think about reality.

Astronomers uncover collisional signature of filamentary structures in galactic G34 molecular cloud

Using CO (J=1–0) molecular line data obtained from the 13.7-meter millimeter-wave telescope at the Purple Mountain Observatory’s Delingha Observatory, Sun Mingke, a Ph.D. student from the Xinjiang Astronomical Observatory of the Chinese Academy of Sciences and his collaborators conducted a systematic study of the galactic molecular cloud G34. They revealed the collisional signatures and dynamical mechanisms of filamentary structures in this region. The results are published in Astronomy & Astrophysics.

Star formation is one of the key processes that drive the evolution of galaxies and the . Recent observations and suggest that interactions and collisions between large-scale filamentary structures may play an important role in triggering high-mass .

In this study, the researchers identified two giant filaments, designated F1 and F2, in the G34 region. By analyzing their and velocity field, the researchers found clear evidence of ongoing collisions between the filaments.

/* */