Future pets!
A new study finds surprising evidence of the self-evolution of urban foxes.
Future pets!
A new study finds surprising evidence of the self-evolution of urban foxes.
NASA’s Discover supercomputer simulated the extreme conditions of the distant cosmos.
A team of scientists from NASA’s Goddard Space Flight Center used the U.S. space agency’s Center for Climate Simulation (NCCS) Discover supercomputer to run 100 simulations of jets emerging from supermassive black holes.
The scientists set out to better understand these jets — massive beams of energetic particles shooting out into the cosmos — as they play a crucial role in the evolution of the universe.
Recently, a team led by Prof. Guo Guangcan achieved long-lived storage of high-dimensional orbital angular momentum (OAM) quantum states of photons based on cold atomic ensembles, using a guiding magnetic field combined with clock state preparation. Their work was published in Physical Review Letters.
Previous work has shown that integrating multimode memory into quantum networks can greatly improve channel capacity, which is crucial for long distance quantum communication. The collective enhancement effect of the cold atomic ensemble makes it an efficient medium for storing photonic information. Although important progress has been made, many problems remain to be solved in long-lived spatial multimode memory based on cold atomic ensembles, one of which is how to achieve high fidelity for multimode memory after a long storage time since multiple spatial modes are more easily affected by the surrounding environment.
Based on the degrees of freedom of OAM, the team carried out research on the long-lived storage of high-dimensional multimode quantum states using the cold 85Rb system. In this work, to overcome the effect of inhomogeneous evolution due to the spatial complexity of stored OAM, the team used a guiding magnetic field to dominate atomic evolution and then employed a pair of magnetically insensitive states to suppress the decoherence in the transverse direction. After the clock states were employed, the destructive interference between different Zeeman sublevels was eliminated, which consequently extended the lifetime of faithful storage.
Summary: The fossil of a 525-million-year-old tiny sea creature with a preserved nervous system may solve a century-long debate about how the brains of arthropods evolved.
Source: University of Arizona.
Fossils of a tiny sea creature that died more than half a billion years ago may compel a science textbook rewrite of how brains evolved.
We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion – life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.
The study’s findings could play a crucial role in developing a complex brain.
A common feature that connects humans and octopuses has only recently been revealed. It may sound a little bit quirky to you, but not to scientists.
Published very recently in Science Advances today, a team led by Nikolaus Rajewsky of the Max Delbrück Center has now shown that their evolution is linked to a dramatic expansion of their microRNA repertoire.
As said in the statement, the last known common ancestor of humans and cephalopods is a rudimentary wormlike animal with low intelligence and basic eyespots, which can be found if we travel far enough back in evolutionary history.
Nothing in biology makes sense except in the light of evolution. The gradualism of evolution has explained and dissolved life’s mysteries—life’s seemingly irreducible complexity and the illusion that living things possess some sort of mysterious vitalizing essence. So, too, evolution is likely to be key to demystifying the seemingly inexplicable, ethereal nature of consciousness.
First, what does it even mean to say that “Nothing in biology makes sense except in the light of evolution”? If the chosen topic is human consciousness, Martin Luther King and Mother Teresa come quickly to mind. But then what does the term “evolution” contribute to the discussion of the origin of human consciousness? Is it something useful or something theorists are stuck with, come what may?
Science theories should make predictions. Who predicted either King or Mother Teresa?
Never miss a talk! SUBSCRIBE to the TEDx channel: http://bit.ly/1FAg8hB
Mathematics and sex are deeply intertwined. From using mathematics to reveal patterns in our sex lives, to using sex to prime our brain for certain types of problems, to understanding them both in terms of the evolutionary roots of our brain, Dr Clio Cresswell shares her insight into it all.
Dr Clio Cresswell is a Senior Lecturer in Mathematics at The University of Sydney researching the evolution of mathematical thought and the role of mathematics in society. Born in England, she spent part of her childhood on a Greek island, and was then schooled in the south of France where she studied Visual Art. At eighteen she simultaneously discovered the joys of Australia and mathematics, following on to win the University Medal and complete a PhD in mathematics at The University of New South Wales. Communicating mathematics is her field and passion. Clio has appeared on panel shows commenting, debating and interviewing; authored book reviews and opinion pieces; joined breakfast radio teams and current affair programs; always there highlighting the mathematical element to our lives. She is author of Mathematics and Sex.
TEDxSydney is an independently organised event licensed from TED by longtime TEDster, Remo Giuffré (REMO General Store) and organised by his General Thinking network of fellow thinkers and other long time collaborators.
About 600 seemingly disparate fungi that never quite found a fit along the fungal family tree have been shown to have a common ancestor, according to a University of Alberta-led research team that used genome sequencing to give these peculiar creatures their own classification home.
“They don’t have any particular feature that you can see with the naked eye where you can say they belong to the same group. But when you go to the genome, suddenly this emerges,” says Toby Spribille, principal investigator on the project and associate professor in the Department of Biological Sciences.
“I like to think of these as the platypus and echidna of the fungal world.”
Sponsored by Kishore Tipirneni’s new book “A New Eden” available here: https://getbook.at/NewEden | Abiogenesis – origin of life. Living matter from non-living matter. The origin of living organisms from inorganic or non-living material is called abiogenesis. But abiogenesis is not evolution.
Despite the incredible variations of life we see today, at the fundamental level, all living things contain three elements: Nucleic acids, Proteins, and lipids. These three things had to have been present in order for life to start.
The most important component may have been lipids which make up the cell walls because without a way to encapsulate certain elements, they various chemicals could not come together to potentially interact.
Lipids molecules have a unique structure. The round part loves water. The tail part hates water. So it has a tendency to self-assemble into natural spheres. However, when there are certain salt ions present, it destroys the lipid spheres. But RNA and other functions of a cell require salts and other ions. However, researchers at the University of Washington showed that lipid spheres do not disassemble if they are in the presence of amino acids, precursor to protein molecules. So it turns out that lipid cell walls and proteins need each other to exist, in salty water.