Toggle light / dark theme

When I read about the “Aurora Generator Test” video that has been leaked to the media I wondered “why leak it now now and who benefits.” Like many of you, I question the reasons behind any leak from an “unnamed source” inside the US Federal government to the media. Hopefully we’ll all benefit from this particular leak.

Then I thought back to a conversation I had at a trade show booth I was working in several years ago. I was speaking with a fellow from the power generation industry. He indicated that he was very worried about the security ramifications of a hardware refresh of the SCADA systems that his utility was using to control its power generation equipment. The legacy UNIX-based SCADA systems were going to be replaced by Windows based systems. He was even more very worried that the “air gaps” that historically have been used to physically separate the SCADA control networks from power company’s regular data networks might be removed to cut costs.

Thankfully on July 19, 2007 the Federal Energy Regulatory Commission proposed to the North American Electric Reliability Corporation a set of new, and much overdue, cyber security standards that will, once adopted and enforced do a lot to help make an attacker’s job a lot harder. Thank God, the people who operate the most critically important part of our national infrastructure have noticed the obvious.

Hopefully a little sunlight will help accelerate the process of reducing the attack surface of North America’s power grid.

After all, the march to the Singularity will go a lot slower without a reliable power grid.

Matt McGuirl, CISSP

There are two sides to living as long as possible: developing the technologies to cure aging, such as SENS, and preventing human extinction risk, which threatens everybody. Unfortunately, in the life extensionist community, and the world at large, the balance of attention and support is lopsided in favor of the first side of the coin, while largely ignoring the second. I see people meticulously obsessed with caloric restriction and SENS, but apparently unaware of human extinction risks. There’s the global warming movement, sure, but no efforts to address the bio, nano, and AI risks.

It’s easy to understand why. Life extension therapies are a positive and happy thing, whereas existential risk is a negative and discouraging thing. The affect heuristic causes us to shy away from negative affect, while only focusing on projects with positive affect: life extension. Egocentric biases help magnify the effect, because it’s easier to imagine oneself aging and dying than getting wiped out along with billions of others as a result of a planetary plague, for instance. Attributional biases work against both sides of the immortality coin: because there’s no visible bad guy to fight, people aren’t as juiced up as they would be, about, say, protesting a human being like Bush.

Another element working against the risk side of the coin is the assignment of credit: a research team may be the first to significantly extend human life, in which case, the team and all their supporters get bragging rights. Prevention of existential risks is a bit hazier, consisting of networks of safeguards which all contribute a little bit towards lowering the probability of disaster. Existential risk prevention isn’t likely to be the way it is in the movies, where the hero punches out the mad scientist right before he presses the red button that says “Planet Destroyer”, but because of a cooperative network of individuals working to increase safety in the diverse areas that risks could emerge from: biotech, nanotech, and AI.

Present-day immortalists and transhumanists simply don’t care enough about existential risk. Many of them are at the same stage with regards to ideological progression as most of humanity is against the specter of death: accepting, in denial, dismissive. There are few things less pleasant to contemplate than humanity destroying itself, but it must be done anyhow, because if we slip and fall, there’s no getting up.

The greatest challenge is that the likelihood of disaster per year must be decreased to very low levels — less than 0.001% or something — because otherwise the aggregate probability computed over a series of years will approach 1 at the limit. There are many risks that even distributing ourselves throughout space would do nothing to combat — rogue, space-going AI, replicators that eat asteroids and live off sunlight, agents that pursue reproduction at the exclusion of value structures such as conscious experiences. Space colonization is not our silver bullet, despite what some might think. Relying overmuch on space colonization to combat existential risk may give us a false sense of security.

Yesterday it hit the national news that synthetic life is on its way within 3 to 10 years. To anyone following the field, this comes as zero surprise, but there are many thinkers out there who might not have seen it coming. The Lifeboat Foundation, which has saw this well in advance, set up the A-Prize as an effort to bring development of artificial life out into the open, where it should be, and the A-Prize currently has a grand total of three donors: myself, Sergio Tarrero, and one anonymous donor. This is probably a result of insufficient publicity, though.

Genetically engineered viruses are a risk today. Synthetic life will be a risk in 3–10 years. AI could be a risk in 10 years, or it could be a risk now — we have no idea. The fastest supercomputers are already approximating the computing power of the human brain, but since an airplane is way less complex than a bird, we should assume that less-than-human computing power is sufficient for AI. Nanotechnological replicators, a distinct category of replicator that blurs into synthetic life at the extremes, could be a risk in 5–15 years — again, we don’t know. Better to assume they’re coming sooner, and be safe rather than sorry.

Once you realize that humanity has lived entirely without existential risks (except the tiny probability of asteroid impact) since Homo sapiens evolved over 100,000 years ago, and we’re about to be hit full-force by these new risks in the next 3–15 years, the interval between now and then is practically nothing. Ideally, we’d have 100 or 500 years of advance notice to prepare for these risks, not 3–15. But since 3–15 is all we have, we’d better use it.

If humanity continues to survive, the technologies for radical life extension are sure to be developed, taking into account economic considerations alone. The efforts of Aubrey de Grey and others may hurry it along, saving a few million lives in the process, and that’s great. But if we develop SENS only to destroy ourselves a few years later, it’s worse than useless. It’s better to overinvest in existential risk, encourage cryonics for those whose bodies can’t last until aging is defeated, and address aging once we have a handle on existential risk, which we quite obviously don’t. Remember: there will always be more people paying attention to radical life extension than existential risk, so the former won’t be losing much if you shift your focus to the latter. As fellow blogger Steven says, “You have only a small fraction of the world’s eggs; putting them all in the best available basket will help, not harm, the global egg spreading effort.”

For more on why I think fighting existential risk should be central for any life extensionist, see Immortalist Utilitarianism, written in 2004.

A point on human extinction risk analysis.

To look at existential risk rationally requires that we maintain a cool, detached perspective. It’s somewhat hard to think of how this might be done, although watching videos of planetary destruction could actually help! As a detective needs to look at a few crime scenes before he can get experienced and move beyond being a simple gumshoe, existential risk analysts need to view simulations and thought experiments of planetary destruction before they can consider it without flinching. Because it is impossible to acquire experience of human extinction risk, as by definition no one is alive afterwards, we have to settle for simulations.

The reaction of many educated adults to extinction risk discussions reminds me of the reaction kids in my Middle School health classes had to the mention of the word “penis”: adolescent giggling. If I were to get onstage in front of a random audience and start talking about existential risk when they didn’t expect it, using words like “planetary destruction”, they’d probably start giggling, at least in their minds. Obviously, we have a way to mature as a society until we can look calmly at the prospect of our own demise. By resolving to do so yourself, you can be a part of the solution instead of the problem.

Last week a blogger for the Houston Chronicle, Eric Berger, covered my post on immortality and extinction risk, and the immaturity of most of the comments received is expected but also telling. One reader writes that we should hire Will Smith to save the world, another writes: “I don’t worry about this sort of thing, because when it happens, I’ll be dead and won’t care.” Just like how you get to see someone’s true self a little better when they’re a tad tipsy, we get to see what people really think of extinction risk analysis by their anonymous comments on a big website. When people are on the record, they aren’t likely to make pithy comments like those on the blog, but they might be thinking them, and what they say in public is likely to be a dressed-up version of these sentiments. For instance, there’s an article that appeared in The Mercury on the 22nd of April in 2003, “Disastronomer Royal: More Apocalyptic then the Pope”, which exemplifies the reaction to those who take the prospect of extinction risk seriously, referring to Martin Rees in this case. Extinction denialist articles are not hard to find on the Internet: just Google them.

Ideally, existential risk analysis should be getting hundreds of millions of dollars in funding, as the study of global warming does today. Until there are planetary immune systems in place that can respond so quickly and comprehensively that the likelihood of terminal disaster is reduced to practically nothing, existential risk mitigation should be the number one priority of the human species. And the first step is for individuals, such as yourself, to look at the prospect of human extinction in a serious way.

NASA’s Marshall Space Flight Center has designed a nuclear-warhead-carrying spacecraft, that would be boosted by the US agency’s proposed Ares V cargo launch vehicle, to deflect asteroids.

The Ares V launch vehicle is scheduled to first fly in 2018. It would launch 130 tons to LEO.

I welcome this study for providing a clearer analysis of the deflection options and the analyzing costs of searching for threatening asteroids.

The 8.9m (29ft)-long “Cradle” spacecraft would carry six 1,500kg (3,300lb) missile-like interceptor vehicles that would carry one 1.2MT B83 nuclear warhead each, with a total mass of 11,035kg.

99942 Apophis is a near-Earth asteroid that caused a brief period of concern in December 2004 because initial observations indicated a relatively large probability that it would strike the Earth in 2029. It is 350 meters across and weighs about 46 million tons.

The study team assessed a series of approaches that could be used to divert a NEO potentially on a collision course with Earth. Nuclear explosives, as well as non-nuclear options, were assessed.
• Nuclear standoff explosions are assessed to be 10–100 times more effective than the non-nuclear alternatives analyzed in this study. Other techniques involving the surface or subsurface use of nuclear explosives may be more efficient, but they run an increased risk of fracturing the target NEO. They also carry higher development and operations risks.
• Non-nuclear kinetic impactors are the most mature approach and could be used in some deflection/mitigation scenarios, especially for NEOs that consist of a single small, solid body.
• “Slow push” mitigation techniques are the most expensive, have the lowest level of technical readiness, and their ability to both travel to and divert a threatening NEO would be limited unless mission durations of many years to decades are possible.
• 30–80 percent of potentially hazardous NEOs are in orbits that are beyond the capability of current or planned launch systems. Therefore, planetary gravity assist swingby trajectories or on-orbit assembly of modular propulsion systems may be needed to augment launch vehicle performance, if these objects need to be deflected.


This diagram shows that the nuclear options work better and can handle asteroids up to 950 meters in size


This is a table that shows that a performance index of 1 means a method was good enough to perform a successful deflection. Less than 1 means more launches are needed.


This is a drawing of the deflection vehicle

The Lifeboat foundation has the asteroid shield program

The US-led effort to expand the military BMEWS (ballistic missile early warning radar system) to Poland and the Czech Republic provoke Russian military strategists. Putin has proposed using their already operative radar base in Azerbajian (See “Azeri radar eyed for US shield”, BBC) in exchange for information from the US system. The US/NATO proposed TMD (theater missile defense) will also integrate early warning systems for short-range missiles in southern Europe. Is the race for space awareness and the weaponization of space inevitable?

The justification for the missile shield is the potential threat of long range missiles from Iran and North Korea (See “N-Korea test fires missile”, BBC). Military experts predict that with the current progress of nuclear research and missile technology available to Iran they will pose a threat to the US in 2015. NATO and Russia co-operate in certain military matters through the Russia-Nato Council but has increasingly been in conflict over the Iranian nuclear program and the European missile shield. (See “Russia-NATO: A marriage of convenience”, RIA Novosti). Russia has also demonstrated the ineffectiveness of the missile shield by launching their RS-24 multiple missile system carrying 10 warheads (See “RS-24 Missiles to replace old systems within next few years”, Interfax).

Terrestrial radars need to be complemented by satellites to keep track of missile launches across the planet (so called “boost phase interceptors”, see “Missile defense, satellites and politics”, The Space Review) to ensure complete space awareness. The Chinese Space Agency tested an anti-satellite missile earlier this year (See “Pentagon says China’s anti-satellite test posed a threat to nations”, AP). The move towards a hot space war could be imminent. The official press release was the only information given from Chinese authorities. The secrecy surrounding space capabilities was recently challenged by French authorities when they discovered 20–30 unregistered US surveillance satellites. (See “French says ‘non’ to U.S. Disclosure of Secret Satellites”, Space.com).

The race for the control of space is threatening to destabilize established military power structures. Secrecy is not the way of solving imbalances in international relations. Space is a part of the “commons” and should be dealt with accordingly. I propose an open source approach to the space awareness problematique. There are several approaches to distributed space awareness, e.g. launching private satellites for surveillance and distribution of real-time satellite imagery in order to counter a military space race. The alternative is a UN led control organization like the IAEA.

Other organizations like the Lifeboat Foundation could also play an important role in developing a threat reduction system for the ongoing cold space war.

Vladimir Putin is acting pretty crazy these days. The latest is that he is threatening to point nuclear missiles at Europe because the US is planning to install a missile defense system in Poland. How will this make Europe less inclined to have a missile defense system..? From CNN:

Speaking to foreign reporters days before he travels to Germany for the annual summit with President Bush and the other Group of Eight leaders, Putin assailed the White House plan to place a radar system in the Czech Republic and interceptor missiles in neighboring Poland. Washington says the system is needed to counter a potential threat from Iran.

In an interview released Monday, Putin suggested that Russia may respond to the threat by aiming its nuclear weapons at Europe.

“If a part of the strategic nuclear potential of the United States appears in Europe and, in the opinion of our military specialists, will threaten us, then we will have to take appropriate steps in response. What kind of steps? We will have to have new targets in Europe,” Putin said, according to a transcript released by the Kremlin. These could be targeted with “ballistic or cruise missiles or maybe a completely new system” he said.

As a Russian-American myself, I am appalled and disappointed that Putin’s anti-Americanism has reached the point where he feels he has to threaten Europe with nuclear attack because the US is planning to install a missile defense system there. All I can do is take pleasure in the fact that Putin has stated he will step down within the year, and pray that the next person to hold his office doesn’t behave like a gangster on the world stage.

Five evolutionary stages of pathogen progression from animals to human transmission have been identified A proposed monitoring system of viral chatter has been proposed to provide warning of new diseases before they spread to humans.

In 1999, Wolfe began field work in the jungles of Cameroon to track “viral chatter,” or the regular transmission of diseases from animals to people, usually without further spread among humans. By monitoring the habits and the blood pathologies of bushmeat hunters and their kills, Wolfe and his team have identified at least three previously unknown retroviruses from the same family as HIV, as well as promoted safe practices for handling animals and animal carcasses.

“The Cameroon project demonstrated that it’s possible to collect information on viral transmission under very difficult circumstances from these highly exposed people,” Wolfe said.

With Cameroon as a prototype and a $2.5 million National Institutes of Health Pioneer Award as seed money, Wolfe has gone on to create a network of virus-discovery projects that monitor hunters, butchers, and wildlife trade and zoo workers in some of the world’s most remote viral hotspots. The network of a dozen sites in China, the Democratic Republic of Congo, Malaysia, Laos, Madagascar and Paraguay include source locations for such emerging diseases as SARS, avian flu, Nipah, Ebola and monkeypox.

There are more details of the five stages and a proposed study of the detailed origins of disease.

Wolfe and his colleagues begin by identifying five intermediate stages through which a pathogen exclusively infecting animals must travel before exclusively infecting humans. The research team identifies no inevitable progression of microbes from Stage 1 to Stage 5 and notes that many microbes remain stuck at a specific stage. The journey is arduous, and pathogens rarely climb through all five stages:

Stage 1. Agent only in animals: A microbe that is present in animals but not detected in humans under natural conditions. Examples include most malarial plasmodia.

Stage 2. Primary infection: Animal pathogens that are transmitted from animals to humans as a primary infection but not transmitted among humans. Examples include anthrax, rabies and West Nile virus.

Stage 3. Limited outbreak: Animal pathogens that undergo only a few cycles of secondary transmission among humans so that occasional human outbreaks triggered by a primary infection soon die out. Examples include the Ebola, Marburg and monkeypox viruses.

Stage 4. Long outbreak: A disease that exists in animals and has a natural cycle of infecting humans by primary transmission from the animal host but that also undergoes long sequences of secondary transmission between humans without involvement of animals. Examples include Chagas disease, yellow fever, dengue fever, influenza A, cholera, typhus and West African sleeping sickness.

Stage 5. Exclusive human agent: A pathogen exclusive to humans that involves either an ancestral pathogen present in a common ancestor of chimps and humans or involves a more recent pathogen that evolved into a specialized human pathogen. Examples include HIV, measles, mumps, rubella, smallpox and syphilis.

In addition, the team examines 25 diseases of important historic consequence to humans. Of the 25 diseases, 17 impose the heaviest world burden today: hepatitis B, influenza A, measles, pertussis, rotavirus A, syphilis, tetanus, tuberculosis, AIDS, Chagas disease, cholera, dengue hemorrhagic fever, East and West African sleeping sicknesses, falciparum and vivax malarias, and visceral leishmaniasis.

Eight more imposed heavy burdens in the past but have been reined in or eradicated thanks to modern medicine and public health practices: temperate diphtheria, mumps, plague, rubella, smallpox, typhoid, typhus and tropical yellow fever. Except for AIDS, dengue fever and cholera, most of the 25 have been important for more than two centuries.

The research team considered the varied pathologies of diseases originating in temperate (15) versus tropical (10) regions, as well as differing pathogen and geographic origins. Among the conclusions:

– Most of the temperate diseases, but none of the tropical diseases, are so-called “crowd epidemic diseases,” occurring locally as a brief epidemic and capable of persisting regionally only in large human populations. Most of the diseases originating in temperate climates convey long-lasting immunity.

– Eight of the 15 temperate diseases probably or possibly reached humans from domestic animals, three more from apes or rodents, and the other four came from still unknown sources. Thus the rise of agriculture, starting 11,000 years ago, plays multiple roles in the evolution of animal pathogens into human pathogens.

– Most tropical diseases have originated in wild, non-human primates. These animals are most closely related to humans and thus pose the weakest species barriers to pathogen transfer.

– Animal-derived human pathogens virtually all arose from pathogens of other warm-blooded vertebrates plus, in two cases, birds.

– Nearly all of the 25 major human pathogens originated in the Old Word (Africa, Europe and Asia), facilitating the conquest of the New World. Chagas disease is the only one of the 25 that clearly originated in the New World, while the debate is unresolved for syphilis and tuberculosis.

–Far more temperate diseases arose in the Old World because far more animals that furnish ancestral pathogens were domesticated there. Far fewer tropical diseases arose in the New World because the genetic distance is greater between humans and primates in this part of the globe.

The conclusions of the review illustrate large gaps in the understanding of the origins of even established major infectious diseases. Almost all studies reviewed were based on specimens collected from domestic animals, plus a few wild animal species.

The researchers propose an “origins initiative” aimed at identifying the origins of a dozen of the most important human infectious diseases as well as a global early warning system to monitor pathogens emerging from animals to humans.

This work is relevant to the lifeboat bioshield

In a report to be published in the peer-reviewed journal PLoS Computational Biology and currently available online, Sally Blower, a professor at the Semel Institute for Neuroscience and Human Behavior at UCLA, and Romulus Breban and Raffaele Vardavas, postdoctoral fellows in Blower’s research group, used novel mathematical modeling techniques to predict that current health policy — based on voluntary vaccinations — is not adequate to control severe flu epidemics and pandemics unless vaccination programs offer incentives to individuals.

According to the researchers, the severity of such a health crisis could be reduced if programs were to provide several years of free vaccinations to individuals who pay for only one year. Interestingly, however, some incentive programs could have the opposite effect. Providing free vaccinations for entire families, for example, could actually increase the frequency of severe epidemics. This is because when the head of the household makes a choice — flu shots or no flu shots — on behalf of all the other household members, there is no individual decision-making, and adaptability is decreased.

While other models have determined what proportion of the population would need to be vaccinated in order to prevent a pandemic, none of these models have shown whether this critical coverage can actually be reached. What has been missing, according to Blower, a mathematical and evolutionary biologist, is the human factor.

The human factor involves two biological characteristics, “memory and how adaptable people can be,” Blower said. “These characteristics drive human behavior.”

The model Blower’s team developed is inspired by game theory, used in economics to predict how non-communicating, selfish individuals reach a collective behavior with respect to a common dilemma by adapting to what they think are other people’s decisions. The group modeled each individual’s strategy for making yearly vaccination decisions as an adaptive process of trial and error. They tracked both individual-level decisions and population-level variables — that is, the yearly vaccine coverage level and influenza prevalence, where prevalence is defined as the proportion of the population that is infected. The individual-level model was based on the human biological attributes of memory and adaptability.

The Lifeboat Foundation has the bioshield project

Carnegie Mellon researchers Keith Florig and Baruch Fischhoff offer simple, practical advice: on whether it is worth citizens’ time to stock supplies needed for a home shelter, how urgently should one seek shelter following a nearby nuclear detonation, and how long should survivors remain in a shelter after the radioactive dust settles.


“A number of emergency-management organizations recommend that people stock their homes with a couple dozen categories of emergency supplies,” said Florig of Carnegie Mellon’s engineering and public policy department. “We calculated that it would cost about $240 per year for a typical family to maintain such a stock, including the value of storage space and the time needed to tend to it.”

Their research also suggests that many families who could afford to follow the stocking guidelines might think twice about whether the investment was really worth it, given the low probability that stocked supplies would actually be used in a nuclear emergency.

They advocate simple rules for minimizing risk based on how far people are from the blast. If you are within several miles of the blast, there will be no time to flee and you will have only minutes to seek shelter. If you are 10 miles [downwind] from the blast, you will have 15 to 60 minutes to find shelter, but not enough time to reliably flee the area before the fallout arrives,” said Florig.

However, the prior advice would suggest that if you are 10 miles from the blast that you could move perpendicular to the direction of the fallout plume and get out of the way in under 15 minutes. Needing to move one mile for smaller bombs. So I would think 10–20 miles downwind is a judgement call, but 25 miles you should be able to get out of the way of the fallout plume.

Cities that quickly closed schools and discouraged public gatherings had fewer deaths from the great flu pandemic in 1918 than cities that did not, researchers reported on Monday. Experts agree that a pandemic of some virus, most likely influenza, is almost 100 percent certain. What is not certain is when it will strike and which virus it will be.

In Kansas City, no more than 20 people could attend weddings or funerals. New York mandated staggered shifts at factories. In Seattle, the mayor told people to wear face masks.

No single action worked on its own, the researchers found, it was the combination of measures that saved lives. Peak death rates can be 50% to eight times lower. St. Louis authorities introduced “a broad series of measures designed to promote social distancing” as soon as flu showed up. Philadelphia downplayed the 1918 flu.

Philadelphia ended up with a peak death rate of 257 people per 100,000 population per week. St. Louis had just 31 per 100,000 at the peak.

No good vaccine would be available for months, and drugs that treat influenza are in very short supply.

So experts are looking at what they call non-pharmacologic interventions — ways to prevent infection without drugs. They hope this can buy time while companies make and distribute vaccines and drugs.

Because the virus is spread by small droplets passed within about three feet (1 meter) from person to person, keeping people apart is considered a possible strategy.

The U.S. government flu plan calls for similar measures, including allowing employees to stay home for weeks or even months, telecommuting and closing schools and perhaps large office buildings.

The Lifeboat Foundation has a bioshield project