Toggle light / dark theme

But strangely, this green shade disappears before it reaches the one or two tails trailing behind the comet.

Astronomers, scientists, and chemists have been puzzled by this mystery for almost 90 years. In 1930, it was suggested that this phenomenon was due to sunlight destroying diatomic carbon. The carbon is created from the interaction between sunlight and organic matter on the comet’s head. However, due to the instability of dicarbon, this theory has been hard to test.

Scientists at UNSW Sydney have finally found a way to test this chemical reaction in a laboratory – and in doing so, has proven this 90-year-old theory correct. They solved this mystery with the help of a vacuum chamber, a lot of lasers, and one powerful cosmic reaction.

You may not see them coming, but the effects of climate change are starting to be felt in certain parts of the world. An example of this is the destruction of several coral reefs around the globe in recent years. As devastating as that sounds, it is only the prologue to a long list of potentially catastrophic events yet to arrive. In the long term, climate change threatens to eventually drive humans towards extinction. Therefore, while little steps, like planting more trees and turning out lightbulbs when not in use, are certainly useful, bigger steps are needed to fend off the devastating effects of climate change.

An internal combustion engine is one of the prime contributors to climate change-causing carbon emissions. Such engines produce large quantities of nitrogen oxide, carbon monoxide and other hydrocarbons that harm the environment and cause respiratory disorders in individuals. Due to these—and many more—reasons, electric vehicles, or EVs, need to replace the ones with traditional combustion engines.

EV owners can save about US$700 a year on fuel costs alone. Also, the maintenance expenses of EVs are lower than those of standard vehicles. So, owning EVs can help them save money and reduce their extreme reliance on fossil fuel, thereby slowing down its inevitable depletion from the earth. Additionally, EVs are incredibly efficient as they only consume approximately 25–40 kWh per 100 miles. Most importantly, EVs reduce CO2 emissions by nearly 178 million kg. What’s more, despite the high fuel efficiency and smaller carbon footprint, EVs can outperform vehicles with traditional combustion engines easily.

Meteorite impacts load the atmosphere with dust and cover the Earth’s surface with debris. They have long been debated as a trigger of mass extinctions throughout Earth history. Impact winters generally last 10 years, whereas ejecta blankets persist for 103–105 years. We show that only meteorite impacts that emplaced ejecta blankets rich in K-feldspar (Kfs) correlate to Earth system crises (n = 11, p 0.000005). Kfs is a powerful ice-nucleating aerosol, yet is normally rare in atmospheric dust mineralogy. Ice nucleation plays an important part in cloud microphysics, which modulates the global albedo.

OneZoom is a one-stop site for exploring all life on Earth, its evolutionary history, and how much of it is threatened with extinction.

The OneZoom explorer – available at onezoom.org – maps the connections between 2.2 million living species, the closest thing yet to a single view of all species known to science. The interactive tree of life allows users to zoom in to any species and explore its relationships with others, in a seamless visualisation on a single web page. The explorer also includes images of over 85,000 species, plus, where known, their vulnerability to extinction.

OneZoom was developed by Imperial College London biodiversity researcher Dr. James Rosindell and University of Oxford evolutionary biologist Dr. Yan Wong. In a paper published today in Methods in Ecology and Evolution, Drs Wong and Rosindell present the result of over ten years of work, gradually creating what they regard as “the Google Earth of biology.”

Moderator: Michael Wall.
Panelists: Kennda Lynch, Abigail Fraeman, Morgan Cable.

Part of the Earth at the Crossroads conference held on Nov. 18, 2021.

Tantalizing new discoveries suggest that we are probably not alone in the universe. And yet, as Enrico Fermi first put in 1950: where is everybody? Are habitable worlds rare, unlikely, and therefore cosmically precious? Or is life easily overwhelmed by changing planetary conditions? Do technological societies in particular face an inevitable “Great Filter” that causes their extinction? These questions link the search for extraterrestrial life to the urgent environmental challenges facing our own civilization, from deadly pandemics to human-caused climate change. On November 18th, Georgetown University and the SETI Institute will unite scholars, journalists, artists and activists in conversations that explore what the search for alien life may reveal about the future of life on Earth. These conversations will be open to Georgetown students and will be broadcast to the public. They will culminate in a roundtable debate intended to draft a proclamation on the state of Earth’s environment and its future potential in a cosmic context.

If you like science, support the SETI Institute! We’re a non-profit research institution whose focus is understanding the nature and origins of life in the universe. Donate here: https://seti.org/donate.

The Artificial Intelligence industry should create a global community of hackers and “threat modelers” dedicated to stress-testing the harm potential of new AI products in order to earn the trust of governments and the public before it’s too late.

This is one of the recommendations made by an international team of risk and machine-learning experts, led by researchers at the University of Cambridge’s Center for the Study of Existential Risk (CSER), who have authored a new “call to action” published today in the journal Science.

They say that companies building intelligent technologies should harness techniques such as “red team” hacking, audit trails and “bias bounties”—paying out rewards for revealing ethical flaws—to prove their integrity before releasing AI for use on the wider public.

According to a news release by The University of Manchester, a groundbreaking study published in the journal Scientific Reports provides new evidence that helps us to understand the asteroid impact that brought an end to 75 percent of life on Earth, including non-avian dinosaurs, at the Cretaceous-Paleogene transition 66 million years ago.

This project has been a huge undertaking but well worth it. For so many years we’ve collected and processed the data, and now we have compelling evidence that changes how we think of the KPg event, but can simultaneously help us better prepare for future ecological and environmental hazards.

Time of year plays an important role in many biological functions— reproduction, available food sources, feeding strategies, host-parasite interactions, seasonal dormancy, breeding patterns, to name a few. It is hence no surprise that the time of year for a global-scale disaster can play a big role in how harshly it impacts life. The seasonal timing of the Chicxulub impact has therefore been a critical question for the story of the end-Cretaceous extinction. Until now the answer to that question has remained unclear.

A huge asteroid the size of the Eiffel Tower is approaching our planet. The asteroid is named 4,660 Nereus and has been flagged ‘Potentially Hazardous’ by NASA. Nereus is 330 meters long and will break into Earth’s orbit on Saturday, December 11. The colossal asteroid is traveling at 23,700 km/h towards our planet.

On December 11, the asteroid will make its closest approach to Earth. It will come within 3.86 million km, about ten times the distance between Earth and the Moon. Although it sounds like an enormous gap on cosmic scales, it is actually a stone’s throw away.

How to watch comet Leonard: https://bit.ly/3xYv2Od