Toggle light / dark theme

Existential Hope: Creon Levit | On space and the long-term future

Are we alone in the universe? What could a future for humans in space look like? And what would Creon’s advise to Elon Musk be if he wants to make a self-sufficient mass colony there? This Hope Drop features Creon Levit, chief technologist and director of R&D at Planet Labs.

Creon Levit is chief technologist at Planet Labs, where he works to move the world toward existential hope via novel satellite technologies. He also hosts Foresight Institute’s Space Group.

Creon speaks on:

- His experiences working with NASA & Planet Labs.
- Natural systems technologies.
- Regenerative Agriculture.
- His vision for the future.
- And much more!

Creon is chief technologist and director of R&D at Planet Labs, and a Foresight Institute senior fellow. He previously worked at NASA Ames Research Center in Silicon Valley, where he was one of the founders of the NAS (NASA Advanced Supercomputing) division, co-PI on the Virtual Wind Tunnel project, co-founder of the NASA Molecular Nanotechnology Group (the first federally funded research lab devoted to molecular nanotechnology), co-PI on the hyperwall project, investigator on the Columbia accident investigation board, member of the NASA engineering and safety center, investigator on the millimeter-wave thermal rocket project, the Stardust re-entry observation campaign, PI on the LightForce project, special assistant to the center director, and chief scientist for the programs and projects directorate.

Submit your contribution to the storytelling bounty from Creon’s prompt to “Imagine a shift in human nature where we could all have love, community, technology, and adventure, as well as lack of severe hardship or fear.” here: https://680d4kcs6ki.typeform.com/to/jHROTs6z.

Study shows hazardous herbicide chemical goes airborne

“Dicamba drift”—the movement of the herbicide dicamba off crops through the atmosphere—can result in unintentional damage to neighboring plants. To prevent dicamba drift, other chemicals, typically amines, are mixed with dicamba to “lock” it in place and prevent it from volatilizing, or turning into a vapor that more easily moves in the atmosphere.

Now, new research from the lab of Kimberly Parker, an assistant professor of energy, environmental and chemical engineering at Washington University in St. Louis’ McKelvey School of Engineering, has shed new light on this story by demonstrating for the first time that these themselves volatilize, often more than dicamba itself.

Their findings were published Sept. 23 in the journal Environmental Science and Technology.

A hackable, multi-functional, and modular extrusion 3D printer for soft materials

Researchers have developed a hackable and multi-functional 3D printer for soft materials that is affordable and open design. The technology has the potential to unlock further innovation in diverse fields, such as tissue engineering, soft robotics, food, and eco-friendly material processing—aiding the creation of unprecedented designs.

Carbon dioxide can revolutionize rooftop farming, here is the proof

A new way to boost the growth of plants in rooftop farms.

Humans constantly breathe out large amounts of CO2 and when we are inside a building for a period of time, it creates high concentrations of carbon dioxide inside the building. This CO2 is removed through a building’s exhaust system.

Plants take in CO2 as a source of food and when they are exposed to lots of CO2, they will grow bigger than they would have otherwise.


Dr. Sarabeth Buckley.

Interestingly, a team of researchers from Boston University has proposed a system called BIG GRO in which excess CO2 from a building’s exhaust system can be utilized as a fertilizer to grow thriving rooftop gardens.

This unmanned agricultural robot could transform the industry

New Zealand-based agritech company Robotics Plus has launched an autonomous multi-use, modular vehicle for agriculture that could revolutionize the industry by alleviating ongoing labor shortages and simplifying agricultural tasks, according to a press release by the firm published on Thursday.

Optimizing tasks

The robot can be supervised in a fleet of vehicles by a single human operator, using a combination of vision systems and other technologies to sense its environment. This empowers it to optimize tasks and allow intelligent and targeted application of inputs such as sprays. It is suitable for a variety of jobs including spraying, weed control, mulching, mowing and crop analysis.

Dr. Ezinne Uzo-Okoro, Ph.D. — Space Policy — Office of Science & Technology Policy, White House

Advancing Space For Humanity — Dr. Ezinne Uzo-Okoro, Ph.D. — Assistant Director for Space Policy, Office of Science and Technology Policy, The White House.


Dr. Ezinne Uzo-Okoro, Ph.D. is Assistant Director for Space Policy, Office of Science and Technology Policy, at the White House (https://www.whitehouse.gov/ostp/) where she focuses on determining civil and commercial space priorities for the President’s science advisor, and her portfolio includes a wide range of disciplines including Orbital Debris, On-orbit Servicing, Assembly, and Manufacturing (OSAM), Earth Observations, Space Weather, and Planetary Protection.

Previously, Dr. Uzo-Okoro built and managed over 60 spacecraft missions and programs in 17 years at NASA, in roles as an engineer, technical expert, manager and executive, in earth observations, planetary science, heliophysics, astrophysics, human exploration, and space communications, which represented $9.2B in total program value. Her last role was as a NASA Heliophysics program executive.

Dr. Uzo-Okoro has an undergraduate degree in Computer Science from Rensselaer Polytechnic Institute, and three masters degrees in Space Systems, Space Robotics, and Public Policy from Johns Hopkins University (APL), MIT (the Media Lab), and Harvard University, and a PhD in Space Systems from MIT, on the robotic assembly of satellites.

During her career, Dr. Uzo-Okoro also founded Terraformers.com to help grow affordable food through productive and networked backyard gardens, as a precursor to growing food in space. Her immigration story is profiled in President George W. Bush’s book, ‘Out of Many, One’.

Scientists use machine learning to accelerate materials discovery

A new computational approach will improve understanding of different states of carbon and guide the search for materials yet to be discovered.

Materials—we use them, wear them, eat them and create them. Sometimes we invent them by accident, like with Silly Putty. But far more often, making useful materials is a tedious and expensive process of trial and error.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have recently demonstrated an automated process for identifying and exploring promising new materials by combining machine learning (ML)—a type of artificial intelligence—and computing. The new approach could help accelerate the discovery and design of useful materials.

Scientists Work Out How To Grow Zombie Mushrooms In A Lab — It Could Help Unlock New Virus-Fighting, Anti-Cancer Drugs

A team of scientists from Korea and Egypt have discovered a better way to grow insect-hunting fungi in a lab, according to research published Wednesday in Frontiers in Microbiology.

The fungi can be grown using grains like brown rice but they do not produce much cordycepin, prompting the researchers to suggest insects—which are a richer protein source and the fungi target in nature—as a better alternative. fungi, which infect and zombify insects, are difficult to cultivate but contain chemicals that could help fight cancer and viruses and possibly help treat Covid-19.

/* */