Toggle light / dark theme

Electrosynthesis of urea from flue gas achieves high efficiency with no ammonia byproducts

Urea, with the formula CO(NH2)2, is a chemical compound that is widely used in a range of sectors, including manufacturing, agriculture and various industries. Conventionally, this compound is produced via a two-step process that entails the synthesis of ammonia from nitrogen (N₂) and its subsequent reaction with carbon dioxide (CO₂).

This reaction occurs at and under , leading to the formation of a compound called ammonium carbamate. This compound is then decomposed at lower pressures, which ultimately produces and water.

Traditional processes for producing urea are very energy intensive, meaning that to produce desired amounts of urea they consume a lot of electrical power. Over the past few years, some engineers have thus been trying to devise more energy-efficient strategies to synthesize urea.

Fasting-Style Diet Seems to Result in Dynamic Changes in Human Brains

Scientists looking to tackle our ongoing obesity crisis have made an important discovery: Intermittent calorie restriction leads to significant changes both in the gut and the brain, which may open up new options for maintaining a healthy weight.

Researchers from China studied 25 volunteers classed as obese over a period of 62 days, during which they took part in an intermittent energy restriction (IER) program – a regime that involves careful control of calorie intake and relative fasting on some days.

Not only did the participants in the study lose weight – 7.6 kilograms (16.8 pounds) or 7.8 percent of their body weight on average – there was also evidence of shifts in the activity of obesity-related regions of the brain, and in the make-up of gut bacteria.

Flying squirrel-inspired drone with foldable wings demonstrates high maneuverability

Unmanned aerial vehicles (UAVs), commonly known as drones, have already proved to be valuable tools for a wide range of applications, ranging from film and entertainment production to defense and security, agriculture, logistics, construction and environmental monitoring. While these technologies are already widely used in many countries worldwide, engineers have been trying to enhance their capabilities further so that they can be used to tackle even more complex problems.

Researchers at Pohang University of Science and Technology and the Agency for Defense Development (ADD)’s AI Autonomy Technology Center in South Korea recently developed a drone with foldable wings that could be more maneuverable than conventional . Their drone draws inspiration from the winged flying squirrel, a type of squirrel that uses loose flaps of skin attached from their wrists to their ankles to glide from tree to tree.

“The flying squirrel drone is inspired by the movements of flying squirrels, particularly their ability to rapidly decelerate by spreading their wings just before landing on trees,” Dohyeon Lee, Jun-Gill Kang and Soohee Han, co-authors of the paper, told Tech Xplore. “We initiated this research with the belief that, like flying squirrels, drones could expand their dynamic capabilities by utilizing .”

Prepare for pandemic NOW as new virus spreads to all 50 States

Leading health experts have warned that the US is staring down the barrel of another pandemic as bird flu spirals out of control on US farms.

So far, the H5N1 outbreak has affected nearly 1,000 dairy cow herds and resulted in more than 70 human cases, including the first confirmed death.

The US poultry industry is at significant risk, say experts from the Global Virus Network (GVN), particularly in areas with high-density farming and where personal protective practices may be lacking.

First atomic map of potato pathogen reveals potential infection mechanism

Plants are susceptible to a wide range of pathogens. For the common potato plant, one such threat is Pectobacterium atrosepticum, a bacterium that causes stems to blacken, tissues to decay, and often leads to plant death, resulting in significant agricultural losses each year.

In 2012, researchers isolated a new virus that infects and kills this bacterium—a bacteriophage named φTE (phiTE). Now, for the first time, scientists have uncovered the atomic structure of φTE, revealing a possible mechanism of infection that may be more complex than previously thought.

The study, published earlier this month in Nature Communications, is the result of a multidisciplinary collaboration between researchers from the Okinawa Institute of Science and Technology (OIST) and the University of Otago. It brings together expertise across several fields, including virology, , , protein engineering, biochemistry, and biophysics.

Dual-action nanoparticle therapy targets obesity by converting white fat and reducing inflammation

Scientists at the Terasaki Institute for Biomedical Innovation, in collaboration with the University of Maryland School of Pharmacy, have developed a new nanoparticle therapy that tackles obesity through two complementary mechanisms: converting energy-storing white fat into calorie-burning beige fat while simultaneously reducing obesity-related inflammation.

Their findings, published in the Journal of Controlled Release, are detailed in an article titled “Apigenin-loaded nanoparticles for obesity intervention through immunomodulation and adipocyte browning.” This innovative approach addresses key limitations of current obesity treatments by precisely targeting adipose tissue with apigenin-loaded nanoparticles—enhancing therapeutic effects while minimizing potential side effects.

The research team, led by Dr. Alireza Hassani Najafabadi and Dr. Ryan M. Pearson, engineered specialized PLGA nanoparticles to deliver the natural compound apigenin directly to fat tissue. This targeted delivery system ensures optimal therapeutic effects while minimizing potential side effects throughout the body.

Farm robot autonomously navigates, harvests among raised beds

Strawberry fields forever will exist for the in-demand fruit, but the laborers who do the backbreaking work of harvesting them might continue to dwindle. While raised, high-bed cultivation somewhat eases the manual labor, the need for robots to help harvest strawberries, tomatoes, and other such produce is apparent.

As a first step, Osaka Metropolitan University Assistant Professor Takuya Fujinaga has developed an algorithm for robots to autonomously drive in two modes: moving to a pre-designated destination and moving alongside raised cultivation beds. The Graduate School of Engineering researcher experimented with an agricultural robot that utilizes lidar point cloud data to map the environment.


Official website for Osaka Metropolitan University. Established in 2022 through the merger of Osaka City University and Osaka Prefecture University.

/* */