Toggle light / dark theme

Anti-aging drug targets Alzheimer’s

Scientists investigating Alzheimer’s treatments at the Salk Institute have uncovered some key mechanisms that enable an experimental drug to reverse memory loss in mouse models of the disease. The discovery not only bodes well for the possibility of clinical trials, but provides researchers with a new target to consider in the wider development of compounds to counter the degenerative effects of the condition.

The research centers on a drug called CMS121, which is a synthetic version of a chemical called fisetin that occurs naturally in fruits and vegetables. The Salk team’s previous studies concerning CMS121 have produced some very promising results, with one paper published last year describing how the drug influences age-related metabolic pathways in the brain, protecting against the type of degeneration associated with Alzheimer’s. This followed earlier studies demonstrating how fisetin can prevent memory loss in mice engineered to develop Alzheimer’s.

Work continues at Salk to understand how exactly fisetin and the synthetic variant CMS121 produces these anti-aging effects on the brain. In their latest study, the researchers again turned to mice engineered to develop Alzheimer’s, which were administered daily doses of CMS121 from the age of nine months. This is the equivalent to middle age in humans, with the mice already exhibiting learning and memory problems before the treatment began.

Meet the Mushrooms That Could Build a House

Bay Area based artist-inventor and amateur mycologist Phil Ross has an international patent pending on a method of producing fungus as a sustainable construction material. It may be surprising to hear that a biodegradable, durable, and non-toxic building material is on sale in the vegetable aisle at the supermarket. However, it’s not the tasty caps that Ross is after, but the root-like fibers of mushrooms form an enormous underground tangle called mycelium. Dried mycelium forms a lightweight mold and water resistant fire-proof material that is an effective insulator. It is also very sturdy stuff. Bob Engels of Gourmet Mushrooms notes, “Hardened steel blades on equipment at our farm need regular attention following their encounters with these massed threads of hyphae.”

Ross reported that multiple saw blades and metal files were destroyed while shaping the five hundred mycelium bricks he grew into an archway. The archway was a 6×6 foot sculpture titled Mycotectural Alpha, and was likely the first man-made structure made entirely out of mushrooms. Others have taken notice of the potential of fungus—a new start-up called Evocative Design producing mycelium alternatives to styrofoam and insulation material has received grants from the National Science Foundation, the Environmental Protection Agency, and the Department of Agriculture.

Ross’s “biotechnical” artwork encompasses drawings, paintings, sculptures, prototypes, and extensive materials research. Over the past 15 years he has been experimenting with fungus, growing and shaping mushrooms in sterile laboratory-like environments, even learning to make his own air filters to provide the necessary clean air. He says mycelium bricks can be grown in about a week from a mixture poured into a mold, but the more organic-looking mushroom sculptures that are created by adding or subtracting gas or air from their growing environment can take years to create. the artist explains how the “myotecture” bricks are made:

Hemp fibres ‘better than graphene’

Circa 2014


The waste fibres from hemp crops can be transformed into high-performance energy storage devices, scientists say.

They “cooked” cannabis bark into carbon nanosheets and built supercapacitors “on a par with or better than graphene” — the industry gold standard.

Electric cars and power tools could harness this hemp technology, the US researchers say.

The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria

Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.

Lactoferrin (LF) or lactotransferrin has recently come under the spotlight, particularly with regards to the new coronavirus pandemic that started in 2019 (COVID-19). Diet and supplements support a well-functioning immune system, and favorably influence the body’s ability to fight infection. Although LF is produced by the body itself, as a secretion by exocrine glands (such as maternal milk or tears) and secondary granules of human neutrophils (1), it can also be taken as a supplement, where it then acts as nutraceutical or functional food. Our particular focus is on its role as an oral supplement. Here we also collate some of the evidence that shows how LF may be an important nutrient to support host immunity, including as an antibacterial and antiviral agent, but particularly with the current COVID-19 pandemic in mind.

We summarize what is already known about LF, including its immunological properties, as well as its antibacterial and antiviral activities. We also discuss how LF uses Heparan Sulfate Proteoglycans (HSPGs) on cell surfaces to facilitate entry. This is of particular importance to coronaviruses, as these viruses are considered to bind to the host cell by attaching first to HSPGs using them as preliminary docking sites on the host cell surface. LF is known to interfere with some of the receptors used by coronaviruses, it may thus contribute to the prevention and treatment of SARS CoV-2 infections. In COVID-19 infection, LF may therefore have a role to play, not only sequestering iron and inflammatory molecules that are severely increased during the cytokine burst, but also possibly in assisting by occupying receptors and HSPGs.

Boosting immune system a potential treatment strategy for COVID-19

But new findings from a team of researchers led by scientists at Washington University School of Medicine in St. Louis point to another theory and suggest that become ill because their immune systems can’t do enough to protect them from the virus, landing them in intensive care units. They suggest that boosting immunity could be a potential treatment strategy for COVID-19.

Such a strategy has been proposed in two recently published papers, one published online in JAMA Network Open and the other published online in the journal JCI Insight.

“People around the world have been treating patients seriously ill with COVID-19 using drugs that do very different things,” said senior investigator Richard S. Hotchkiss, MD, professor of anesthesiology, of medicine and of surgery. “Some drugs tamp down the immune response, while others enhance it. Everybody seems to be throwing the kitchen sink at the illness. It may be true that some people die from a hyperinflammatory response, but it appears more likely to us that if you block the too much, you’re not going to be able to control the virus.”

The newly discovered weird link between REM sleep and eating patterns

An intriguing new study, from a team of Swiss researchers, has revealed neural activity during REM sleep in a particular region of the brain known to affect appetite and feeding behaviors significantly influences waking eating patterns.

Despite a hefty volume of robust study, REM sleep is still a mysterious and unique sleep phase. Named after the rapid eye movements that occur in all mammals during this sleep phase, it has also been referred to as paradoxical sleep, due to the strange similarity in brain activity between waking states and REM sleep.

The new research homed in on a brain region called the lateral hypothalamus. This tiny brain region, found in all mammals, is known to play a fundamental role in food intake, compulsive behavior, and a number of other physiological processes.