Toggle light / dark theme

Lab-grown meat could be on store shelves by 2022, thanks to Future Meat Technologies

Are consumers ready for meat grown in a lab?

Companies like Memphis Meats, Aleph Farms, Higher Steaks, Mosa Meat and Meatable are all trying to bring to supermarkets around the world meat made from cultivated animal cells, but the problem has always been the cost.

Now, Future Meat Technologies has raised $14 million in new financing to build its first pilot manufacturing facilities to bring the cost of production of a cell-made steak down to $10 per pound — or $4 if the meat is combined with plant-based meat substitutes.

7 Foods That Will Naturally Increase NAD+ and Restore Your Youth

Modern research and technology have completed the quest of Juan Ponce de Leon. We have found the fountain of youth. Instead of some remote island, it is everywhere around us in the food that we eat and the beverages we drink. A variety of edibles have been indicated above. They all contain the youth restoring chemical known as NAD+. Including them in your diet is one of the best health decisions you can make today.

Here’s How We Could Feed a Million People on Mars

If we want to colonize Mars, we’re going to need to figure out a way to feed ourselves there, and continuously sending food to the Red Planet isn’t a sustainable plan.

But now, a team of researchers thinks it’s figured out a way to produce enough food on Mars to feed a million people — and they say their plan to make Martian colonists self-sufficient would take just a hundred years to implement.

29-Year-Old French Entrepreneur Creates Light Without Electricity

Download the podcast via Apple Podcasts, Google Play or Spotify.

Sandra Rey, 29, was participating in a student design competition with the theme “biology” and got to watching videos on YouTube of bioluminescent sea creatures when she thought there must be a way to replicate that natural technology. Five years later, her startup, called Glowee, is creating brilliant luminescent art installations for hotels and public spaces.

While she admits, “We’ll never replace the lights in your kitchen,” she hopes to create enough light and enough beauty to play a role in the world’s lighting mix to help reduce reliance on electric lighting.

Promising steps towards hope for a treatment for schizophrenia

Schizophrenia is a severe mental health condition that causes significant disability, and affects 1 in 100 people. Patients with schizophrenia commonly experience negative symptoms, which include lack of motivation, social isolation and inability to experience pleasurable feeling. The current antipsychotics minimally improve these negative symptoms, and there are no currently licensed treatments. In addition, it is estimated that total service costs for schizophrenia in England alone will be £6.5 billion by 2026. In view of this, there is considerable interest in identifying potential treatment targets for these symptoms. However, the nature of the changes in brain chemistry that contribute to these negative symptoms is unknown.

Mu-opioid receptors (MOR) are found in a region of the called the striatum and they play a crucial role in how we experience pleasure and reward. Our bodies naturally produce opioid molecules that include endorphins; which are hormones secreted by the brain that are known to help relieve pain or stress and boost happiness. MORs are receptors that bind these naturally produced endogenous opioid molecules, and stimulation of the MOR system starts a signalling cascade that causes an increase in motivation to seek reward and increase food palatability amongst many other effects. Interestingly, MORs were found to be reduced in the striatum post-mortem in schizophrenia. So, it was unclear whether the availability of these receptors was increased when individuals were alive, or whether reduced MORs was related to the negative symptoms of schizophrenia.

The latest brain scan research from the Psychiatric Imaging group at the MRC LMS published on 3 October in Nature Communications has reported how the MOR system contributes to the negative symptoms displayed in schizophrenia patients. For the first time, this research study showed how MOR levels are significantly reduced in the striatum region of the brain. Thus, a lack of MOR system stimulation in the brain contributes to these negative feelings that schizophrenia patients can experience.

/* */