Toggle light / dark theme

New look at dopamine signaling suggests neuroscientists’ model of reinforcement learning may need to be revised

Dopamine is a powerful signal in the brain, influencing our moods, motivations, movements, and more. The neurotransmitter is crucial for reward-based learning, a function that may be disrupted in a number of psychiatric conditions, from mood disorders to addiction.

Now, researchers led by MIT Institute Professor Ann Graybiel have found surprising patterns of dopamine signaling that suggest neuroscientists may need to refine their model of how occurs in the brain. The team’s findings were published recently in the journal Nature Communications.

Dopamine plays a critical role in teaching people and other animals about the cues and behaviors that portend both positive and negative outcomes; the classic example of this type of learning is the dog that Ivan Pavlov trained to anticipate food at the sound of bell.

Cas9-PE system achieves precise editing and site-specific random mutation in rice

Achieving the aggregation of different mutation types at multiple genomic loci and generating transgene-free plants in the T0 generation is an important goal in crop breeding. Although prime editing (PE), as the latest precise gene editing technology, can achieve any type of base substitution and small insertions or deletions, there are significant differences in efficiency between different editing sites, making it a major challenge to aggregate multiple mutation types within the same plant.

Recently, a collaborative research team led by Li Jiayang from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Science, developed a multiplex gene editing tool named the Cas9-PE system, capable of simultaneously achieving precise editing and site-specific random mutagenesis in rice.

By co-editing the ALSS627I gene to confer resistance to the herbicide bispyribac-sodium (BS) as a selection marker, and using Agrobacterium-mediated transient transformation, the researchers also achieved transgene-free gene editing in the T0 generation.

How Medical Device Cybersecurity Evolved From Idea To Industry Imperative

Mike has over 15 years of experience in healthcare, including extensive experience designing and developing medical devices. MedCrypt, Inc.

On October 1, 2024, the Food and Drug Administration (FDA) marked a major milestone in medical device cybersecurity enforcement. This marks one year since the retracted Refuse to Accept (RTA) policy and the full implementation of the Protecting and Transforming Cyber Healthcare (PATCH) Act amendment to the Food, Drug & Cosmetic Act (FD&C). The FDA’s new requirements represent a fundamental shift in the regulatory landscape for medical device manufacturers (MDMs), as cybersecurity is now a non-negotiable element of device development and compliance.

The timing is not coincidental. In 2023, the FDA issued its final guidance entitled “Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions.” This outlined the detailed cybersecurity requirements and considerations that MDMs must address in their submissions, highlighting the security measures in place to gain regulatory approval. With these requirements, the FDA is taking a hard stance: Cybersecurity is a core consideration, with compliance being systematically enforced.

New foam filter achieves high microplastic removal rates in initial testing

Wuhan University-led research is reporting the development of a revivable self-assembled supramolecular biomass fibrous framework (a novel foam filter) that efficiently removes microplastics from complex aquatic environments.

Plastic waste is a growing global concern due to significant levels of microplastic pollution circulating in soil and waterways and accumulating in the environment, food webs and human tissues. There are no conventional methods for removing microplastics, and developing strategies to handle diverse particle sizes and chemistries is an engineering challenge.

Researchers have been looking for affordable, capable of universal microplastic adsorption. Most existing approaches involve expensive or difficult-to-recover adsorbents, fail under certain environmental conditions, or only target a narrow range of microplastic types.

A new biodegradable material to replace certain microplastics

Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products.

In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down into harmless sugars and amino acids.


MIT researchers developed biodegradable materials that could replace the plastic microbeads now used in beauty products. The materials could also be used to encapsulate nutrients for food fortification.

Portable plasma slays 99.8% germs, turns water into bacteria-killer

This innovative sterilizer is ideal for remote areas, promoting sanitation and eco-friendly farming.


Seoul, South Korea, December 9: A South Korean company, Palsoo, has unveiled a portable sterilization system that utilizes regular tap water to eliminate 99.8% of airborne bacteria and viruses effectively.

This technology, which combines plasma activation with solar charging, offers a sustainable solution for sanitation in areas lacking electricity or facing harsh conditions.

During the CES 2025 Global Media Meet-up event at the AVING News MIK Basecamp in Seoul on December 9, the company’s CEO, Jang Palsoo, explained how the system works.

NASA Satellites reveal Abrupt Drop in Global Freshwater Levels

An international team of scientists using observations from NASA-German satellites found evidence that Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low ever since. Reporting in Surveys in Geophysics, the researchers suggested the shift could indicate Earth’s continents have entered a persistently drier phase.

From 2015 through 2023, satellite measurements showed that the average amount of freshwater stored on land—that includes liquid surface water like lakes and rivers, plus water in aquifers underground—was 290 cubic miles (1,200 cubic km) lower than the average levels from 2002 through 2014, said Matthew Rodell, one of the study authors and a hydrologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s two and a half times the volume of Lake Erie lost.”

During times of drought, along with the modern expansion of irrigated agriculture, farms and cities must rely more heavily on groundwater, which can lead to a cycle of declining underground water supplies: freshwater supplies become depleted, rain and snow fail to replenish them, and more groundwater is pumped.

Serious side effect of using CRISPR-Cas gene scissors uncovered: AZD7648 molecule can destroy parts of genome

Its a problem, but im sure ASI by 2035 will solve for a way to use a Crispr type tool with zero unintended alterations. Look for a way to use w/ out alterations in meantime, but worst case ASI will solve it.


Genome editing with various CRISPR-Cas molecule complexes has progressed rapidly in recent years. Hundreds of labs around the world are now working to put these tools to clinical use and are continuously advancing them.

CRISPR-Cas tools allow researchers to modify individual building blocks of genetic material in a precise and targeted manner. Gene therapies based on such gene editing are already being used to treat inherited diseases, fight cancer and create drought-and heat-tolerant crops.

The CRISPR-Cas9 molecular complex, also known as genetic scissors, is the most widely used tool by scientists around the world. It cuts the double-stranded DNA at the exact site where the genetic material needs to be modified. This contrasts with newer gene-editing methods, which do not cut the double strand.