Toggle light / dark theme

Famous Chilean philosopher Humberto Maturana describes “certainty” in science as subjective emotional opinion and astonishes the physicists’ prominence. French astronomer and “Leonardo” publisher Roger Malina hopes that the LHC safety issue would be discussed in a broader social context and not only in the closer scientific framework of CERN.

(Article published in “oekonews”: http://oekonews.at/index.php?mdoc_id=1067777 )

The latest renowned “Ars Electronica Festival” in Linz (Austria) was dedicated in part to an uncritical worship of the gigantic particle accelerator LHC (Large Hadron Collider) at the European Nuclear Research Center CERN located at the Franco-Swiss border. CERN in turn promoted an art prize with the idea to “cooperate closely” with the arts. This time the objections were of a philosophical nature – and they had what it takes.

In a thought provoking presentation Maturana addressed the limits of our knowledge and the intersubjective foundations of what we call “objective” and “reality.” His talk was spiked with excellent remarks and witty asides that contributed much to the accessibility of these fundamental philosophical problems: “Be realistic, be objective!” Maturana pointed out, simply means that we want others to adopt our point of view. The great constructivist and founder of the concept of autopoiesis clearly distinguished his approach from a solipsistic position.

Given Ars Electronica’s spotlight on CERN and its experimental sub-nuclear research reactor, Maturana’s explanations were especially important, which to the assembled CERN celebrities may have come in a mixture of an unpleasant surprise and a lack of relation to them.

During the question-and-answer period, Markus Goritschnig asked Maturana whether it wasn’t problematic that CERN is basically controlling itself and discarding a number of existential risks discussed related to the LHC — including hypothetical but mathematically demonstrable risks also raised — and later downplayed — by physicists like Nobel Prize winner Frank Wilczek, and whether he thought it necessary to integrate in the LHC safety assessment process other sciences aside from physics such as risk search. In response Maturana replied (in the video from about 1:17): “We human beings can always reflect on what we are doing and choose. And choose to do it or not to do it. And so the question is, how are we scientists reflecting upon what we do? Are we taking seriously our responsibility of what we do? […] We are always in the danger of thinking that, ‘Oh, I have the truth’, I mean — in a culture of truth, in a culture of certainty — because truth and certainty are not as we think — I mean certainty is an emotion. ‘I am certain that something is the case’ means: ‘I do not know’. […] We cannot pretend to impose anything on others; we have to create domains of interrogativity.”

Disregarding these reflections, Sergio Bertolucci (CERN) found the peer review system among the physicists’ community a sufficient scholarly control. He refuted all the disputed risks with the “cosmic ray argument,” arguing that much more energetic collisions are naturally taking place in the atmosphere without any adverse effect. This safety argument by CERN on the LHC, however, can also be criticized under different perspectives, for example: Very high energetic collisions could be measured only indirectly — and the collision frequency under the unprecedented artificial and extreme conditions at the LHC is of astronomical magnitudes higher than in the Earth’s atmosphere and anywhere else in the nearer cosmos.

The second presentation of the “Origin” Symposium III was held by Roger Malina, an astrophysicist and the editor of “Leonardo” (MIT Press), a leading academic journal for the arts, sciences and technology.

Malina opened with a disturbing fact: “95% of the universe is of an unknown nature, dark matter and dark energy. We sort of know how it behaves. But we don’t have a clue of what it is. It does not emit light, it does not reflect light. As an astronomer this is a little bit humbling. We have been looking at the sky for millions of years trying to explain what is going on. And after all of that and all those instruments, we understand only 3% of it. A really humbling thought. […] We are the decoration in the universe. […] And so the conclusion that I’d like to draw is that: We are really badly designed to understand the universe.”

The main problem in research is: “curiosity is not neutral.” When astrophysics reaches its limits, cooperation between arts and science may indeed be fruitful for various reasons and could perhaps lead to better science in the end. In a later communication Roger Malina confirmed that the same can be demonstrated for the relation between natural sciences and humanities or social sciences.

However, the astronomer emphasized that an “art-science collaboration can lead to better science in some cases. It also leads to different science, because by embedding science in the larger society, I think the answer was wrong this morning about scientists peer-reviewing themselves. I think society needs to peer-review itself and to do that you need to embed science differently in society at large, and that means cultural embedding and appropriation. Helga Nowotny at the European Research Council calls this ‘socially robust science’. The fact that CERN did not lead to a black hole that ended the world was not due to peer-review by scientists. It was not due to that process.”

One of Malina’s main arguments focused on differences in “the ethics of curiosity”. The best ethics in (natural) science include notions like: intellectual honesty, integrity, organized scepticism, dis-interestedness, impersonality, universality. “Those are the believe systems of most scientists. And there is a fundamental flaw to that. And Humberto this morning really expanded on some of that. The problem is: Curiosity is embodied. You cannot make it into a neutral ideal of scientific curiosity. And here I got a quote of Humberto’s colleague Varela: “All knowledge is conditioned by the structure of the knower.”

In conclusion, a better co-operation of various sciences and skills is urgently necessary, because: “Artists asks questions that scientists would not normally ask. Finally, why we want more art-science interaction is because we don’t have a choice. There are certain problems in our society today that are so tough we need to change our culture to resolve them. Climate change: we’ve got to couple the science and technology to the way we live. That’s a cultural problem, and we need artists working on that with the scientists every day of the next decade, the next century, if we survive it.

Then Roger Malina directly turned to the LHC safety discussion and articulated an open contradiction to the safety assurance pointed out before: He would generally hope for a much more open process concerning the LHC safety debate, rather than discussing this only in a narrow field of particle physics, concrete: “There are certain problems where we cannot cloister the scientific activity in the scientific world, and I think we really need to break the model. I wish CERN, when they had been discussing the risks, had done that in an open societal context, and not just within the CERN context.”

Presently CERN is holding its annual meeting in Chamonix to fix LHC’s 2012 schedules in order to increase luminosity by a factor of four for maybe finally finding the Higgs Boson – against a 100-Dollar bet of Stephen Hawking who is convinced of Micro Black Holes being observed instead, immediately decaying by hypothetical “Hawking Radiation” — with God Particle’s blessing. Then it would be himself gaining the Nobel Prize Hawking pointed out. Quite ironically, at Ars Electronica official T-Shirts were sold with the “typical signature” of a micro black hole decaying at the LHC – by a totally hypothetical process involving a bunch of unproven assumptions.

In 2013 CERN plans to adapt the LHC due to construction failures for up to CHF 1 Billion to run the “Big Bang Machine” at double the present energies. A neutral and multi-disciplinary risk assessment is still lacking, while a couple of scientists insist that their theories pointing at even global risks have not been invalidated. CERN’s last safety assurance comparing natural cosmic rays hitting the Earth with the LHC experiment is only valid under rather narrow viewpoints. The relatively young analyses of high energetic cosmic rays are based on indirect measurements and calculations. Sort, velocity, mass and origin of these particles are unknown. But, taking the relations for granted and calculating with the “assuring” figures given by CERN PR, within ten years of operation, the LHC under extreme and unprecedented artificial circumstances would produce as many high energetic particle collisions as occur in about 100.000 years in the entire atmosphere of the Earth. Just to illustrate the energetic potential of the gigantic facility: One LHC-beam, thinner than a hair, consisting of billions of protons, has got the power of an aircraft carrier moving at 12 knots.

This article in the Physics arXiv Blog (MIT’s Technology Review) reads: “Black Holes, Safety, and the LHC Upgrade — If the LHC is to be upgraded, safety should be a central part of the plans.”, closing with the claim: “What’s needed, of course, is for the safety of the LHC to be investigated by an independent team of scientists with a strong background in risk analysis but with no professional or financial links to CERN.”
http://www.technologyreview.com/blog/arxiv/27319/

Australian ethicist and risk researcher Mark Leggett concluded in a paper that CERN’s LSAG safety report on the LHC meets less than a fifth of the criteria of a modern risk assessment. There but for the grace of a goddamn particle? Probably not. Before pushing the LHC to its limits, CERN must be challenged by a really neutral, external and multi-disciplinary risk assessment.

Video recordings of the “Origin III” symposium at Ars Electronica:
Presentation Humberto Maturana:

Presentation Roger Malina:

“Origin” Symposia at Ars Electronica:
http://www.aec.at/origin/category/conferences/

Communication on LHC Safety directed to CERN
Feb 10 2012
For a neutral and multidisciplinary risk assessment to be done before any LHC upgrade
http://lhc-concern.info/?page_id=139

More info, links and transcripts of lectures at “LHC-Critique — Network for Safety at experimental sub-nuclear Reactors”:

www.LHC-concern.info

As we all know, Venus’s atmosphere & temperature makes it too hostile for colonization: 450°C temperatures and an average surface pressure almost 100 times that of Earth. Both problems are due to the size of its atmosphere — massive — and 95% of which is CO2.

The general consensus is that Venus was more like that of the Earth several billion years ago, with liquid water on the surface, but a runaway greenhouse effect may have been caused by the evaporation of the surface water and subsequent rise of greenhouse gases.

It poses not just a harsh warning of the prospects of global warming on Earth, but also a case study for how to counter such effects — reversing the runaway greenhouse effect.

I have wondered if anyone has given serious thought to chemical processes which could be set in motion on Venus to extract the carbon dioxide from the atmosphere. The most common gas in the Universe is of course hydrogen, and if sufficient quantities could be introduced to the Venusian atmosphere, with the appropriate catalysts, could the carbon dioxide in the atmosphere be eventually reversed back into solid carbon compounds, water vapor and oxygen? The effect of this would of course not only bring down the temperature, but return the surface pressure, with 95% of its atmosphere removed, to one more similar to that of Earth. Perhaps in adding other aerosols the temperatures could be reduced further and avoid a re-runaway effect.

I’d like to hear others thoughts on this. It would be a long term project — but would perhaps make our closest planet our most habitable one in the future — one we could turn into a habitat that would be very accessible, with ample oxygen, water and mineral resources… The study of such a process would also greatly benefit Earth in the event that theorized runaway greenhouse effects start to occur on our own planet, the strategies learned could save it. Other issues to address regarding Venus: lack of magnetic field and its slow rotation would have to be considered, though hardly off-putting, and 150ppm sulfur dioxide in the atmosphere would need to be cleansed — surely not insurmountable.

Twenty years ago, way back in the primordial soup of the early Network in an out of the way electromagnetic watering hole called USENET, this correspondent entered the previous millennium’s virtual nexus of survival-of-the-weirdest via an accelerated learning process calculated to evolve a cybernetic avatar from the Corpus Digitalis. Now, as columnist, sci-fi writer and independent filmmaker, [Cognition Factor — 2009], with Terence Mckenna, I have filmed rocket launches and solar eclipses for South African Astronomical Observatories, and produced educational programs for South African Large Telescope (SALT). Latest efforts include videography for the International Astronautical Congress in Cape Town October 2011, and a completed, soon-to-be-released, autobiography draft-titled “Journey to Everywhere”.

Cognition Factor attempts to be the world’s first ‘smart movie’, digitally orchestrated for the fusion of Left and Right Cerebral Hemispheres in order to decode civilization into an articulate verbal and visual language structured from sequential logical hypothesis based upon the following ‘Big Five’ questions,

1.) Evolution Or Extinction?
2.) What Is Consciousness?
3.) Is God A Myth?
4.) Fusion Of Science & Spirit?
5.) What Happens When You Die?

Even if you believe that imagination is more important than knowledge, you’ll need a full deck to solve the ‘Arab Spring’ epidemic, which may be a logical step in the ‘Global Equalisation Process as more and more of our Planet’s Alumni fling their hats in the air and emit primal screams approximating;
“we don’t need to accumulate (so much) wealth anymore”, in a language comprising of ‘post Einsteinian’ mathematics…

Good luck to you if you do…

Schwann Cybershaman

I am taking the advice of a reader of this blog and devoting part 2 to examples of old school and modern movies and the visionary science they portray.

Things to Come 1936 — Event Horizon 1997
Things to Come was a disappointment to Wells and Event Horizon was no less a disappointment to audiences. I found them both very interesting as a showcase for some technology and social challenges.… to come- but a little off the mark in regards to the exact technology and explicit social issues. In the final scene of Things to Come, Raymond Massey asks if mankind will choose the stars. What will we choose? I find this moment very powerful- perhaps the example; the most eloguent expression of the whole genre of science fiction. Event Horizon was a complete counterpoint; a horror movie set in space with a starship modeled after a gothic cathedral. Event Horizon had a rescue crew put in stasis for a high G several month journey to Neptune on a fusion powered spaceship. High accelleration and fusion brings H-bombs to mind, and though not portrayed, this propulsion system is in fact a most probable future. Fusion “engines” are old hat in sci-fi despite the near certainty the only places fusion will ever work as advertised are in a bomb or a star. The Event Horizon, haunted and consigned to hell, used a “gravity drive” to achieve star travel by “folding space.” Interestingly, a recent concept for a black hole powered starship is probably the most accurate forecast of the technology that will be used for interstellar travel in the next century. While ripping a hole in the fabric of space time may be strictly science fantasy, for the next thousand years at least, small singularity propulsion using Hawking radiation to achieve a high fraction of the speed of light is mathematically sound and the most obvious future.

https://lifeboat.com/blog/2012/09/only-one-star-drive-can-work-so-far

That is, if humanity avoids an outbreak of engineered pathogens or any one of several other threats to our existence in that time frame.

Hand in hand with any practical method of journeys to other star systems in the concept of the “sleeper ship.” Not only as inevitable as the submarine or powered flight was in the past, the idea of putting human beings in cold storage would bring tremendous changes to society. Suspended animation using a cryopreservation procedure is by far the most radical and important global event possible, and perhpas probable, in the near future. The ramifications of a revivable whole body cryopreservation procedure are truly incredible. Cryopreservation would be the most important event in the history of mankind. Future generations would certainly mark it as the beginning of “modern” civilization. Though not taken seriously anymore than the possiblility of personal computers were, the advances in medical technology make any movies depicting suspended animation quite prophetic.

The Thing 1951/Them 1954 — Deep Impact 1998/Armegeddon 1998
These four movies were essentially about the same.…thing. Whether a space vampire not from earth in the arctic, mutated super organisms underneath the earth, or a big whatever in outer space on a collision course with earth, the subject was a monstrous threat to our world, the end of humankind on earth being the common theme. The lifeboat blog is about such threats and the The Thing and Them would also appeal to any fan of Barbara Ehrenreich’s book, Blood Rites. It is interesting that while we appreciate in a personal way what it means to face monsters or the supernatural, we just do not “get” the much greater threats only recently revealed by impact craters like Chixculub. In this way these movies dealing with instinctive and non-instinctive realized threats have an important relationship to each other. And this connection extends to the more modern sci-fi creature features of past decades. Just how much the The Thing and Them contributed to the greatest military sci-fi movie of the 20th century (Aliens, of course) will probably never be known. Director James Cameron once paid several million dollars out of court to sci-fi writer Harlan Ellison after admitting during an interview to using Ellison’s work- so he will not be making that mistake again. The second and third place honors, Starship Troopers and Predator, were both efforts of Dutch Film maker Paul Verhoeven.

While The Thing and Them still play well, and Deep Impact, directed by James Cameron’s ex-wife, is a good flick and has uncanny predictive elements such as a black president and a tidal wave, Armegeddon is worthless. I mention this trash cinema only because it is necessary for comparison and to applaud the 3 minutes when the cryogenic fuel transfer procedure is seen to be the farce that it is in actuality. Only one of the worst movie directors ever, or the space tourism industry, would parade such a bad idea before the public.
Ice Station Zebra 1968 — The Road 2009
Ice Station Zebra was supposedly based on a true incident. This cold war thriller featured Rock Hudson as the penultimate submarine commander and was a favorite of Howard Hughes. By this time a recluse, Hughes purchased a Las Vegas TV station so he could watch the movie over and over. For those who have not seen it, I will not spoil the sabotage sequence, which has never been equaled. I pair Ice Station Zebra and The Road because they make a fine quartet, or rather sixtet, with The Thing/Them and Deep Impact/Armegeddon.

The setting for many of the scenes in these movies are a wasteland of ice, desert, cometoid, or dead forest. While Armegeddon is one of the worst movies ever made on a big budget, The Road must be one of the best on a small budget- if accuracy is a measure of best. The Road was a problem for the studio that produced it and release was delayed due to the reaction of the test audiences. All viewers left the theatre profoundly depressed. It is a shockingly realistic movie and disturbed to the point where I started writing about impact deflection. The connection between Armegeddon and The Road, two movies so different, is the threat and aftermath of an asteroid or comet impact. While The Road never specifies an impact as the disaster that ravaged the planet, it fits the story perfectly. Armegeddon has a few accurate statements about impacts mixed in with ludicrous plot devices that make the story a bad experience for anyone concerned with planetary protection. It seems almost blasphemous and positively criminal to make such a juvenile for profit enterprise out of an inevitable event that is as serious as serious gets. Do not watch it. Ice Station Zebra, on the other hand, is a must see and is in essence a showcase of the only tools available to prevent The Road from becoming reality. Nuclear weapons and space craft- the very technologies that so many feared would destroy mankind, are the only hope to save the human race in the event of an impending impact.

Part 3:
Gog 1954 — Stealth 2005
Fantastic Voyage 1966 — The Abyss 1989
And notable moments in miscellaneous movies.

GO TO JOURNAL HOMEPAGE HERE

Journal for Innovation, Ethics, & Technology Management

ISSN: 2226-048X

View Journal | Current Issue | Register

Journal for the Advancement of Education

ISSN: 2226-051X

View Journal | Current Issue | Register

Journal for Biological & Health Innovation

ISSN: 2226–0501

View Journal | Current Issue | Register

Journal of Agri-Business & Sustainability

ISSN: 2226–0528

View Journal | Current Issue | Register

Journal for the Methodological Uses of Technology

ISSN: 2226–0498

View Journal | Current Issue | Register

Steamships, locomotives, electricity; these marvels of the industrial age sparked the imagination of futurists such as Jules Verne. Perhaps no other writer or work inspired so many to reach the stars as did this Frenchman’s famous tale of space travel. Later developments in microbiology, chemistry, and astronomy would inspire H.G. Wells and the notable science fiction authors of the early 20th century.

The submarine, aircraft, the spaceship, time travel, nuclear weapons, and even stealth technology were all predicted in some form by science fiction writers many decades before they were realized. The writers were not simply making up such wonders from fanciful thought or childrens ryhmes. As science advanced in the mid 19th and early 20th century, the probable future developments this new knowledge would bring about were in some cases quite obvious. Though powered flight seems a recent miracle, it was long expected as hydrogen balloons and parachutes had been around for over a century and steam propulsion went through a long gestation before ships and trains were driven by the new engines. Solid rockets were ancient and even multiple stages to increase altitude had been in use by fireworks makers for a very long time before the space age.

Some predictions were seen to come about in ways far removed yet still connected to their fictional counterparts. The U.S. Navy flagged steam driven Nautilus swam the ocean blue under nuclear power not long before rockets took men to the moon. While Verne predicted an electric submarine, his notional Florida space gun never did take three men into space. However there was a Canadian weapons designer named Gerald Bull who met his end while trying to build such a gun for Saddam Hussien. The insane Invisible Man of Wells took the form of invisible aircraft playing a less than human role in the insane game of mutually assured destruction. And a true time machine was found easily enough in the mathematics of Einstein. Simply going fast enough through space will take a human being millions of years into the future. However, traveling back in time is still as much an impossibillity as the anti-gravity Cavorite from the First Men in the Moon. Wells missed on occasion but was not far off with his story of alien invaders defeated by germs- except we are the aliens invading the natural world’s ecosystem with our genetically modified creations and could very well soon meet our end as a result.

While Verne’s Captain Nemo made war on the death merchants of his world with a submarine ram, our own more modern anti-war device was found in the hydrogen bomb. So destructive an agent that no new world war has been possible since nuclear weapons were stockpiled in the second half of the last century. Neither Verne or Wells imagined the destructive power of a single missile submarine able to incinerate all the major cities of earth. The dozens of such superdreadnoughts even now cruising in the icy darkness of the deep ocean proves that truth is more often stranger than fiction. It may seem the golden age of predictive fiction has passed as exceptions to the laws of physics prove impossible despite advertisments to the contrary. Science fiction has given way to science fantasy and the suspension of disbelief possible in the last century has turned to disappointment and the distractions of whimsical technological fairy tales. “Beam me up” was simply a way to cut production costs for special effects and warp drive the only trick that would make a one hour episode work. Unobtainium and wishalloy, handwavium and technobabble- it has watered down what our future could be into childish wish fulfillment and escapism.

The triumvirate of the original visionary authors of the last two centuries is completed with E.E. Doc Smith. With this less famous author the line between predictive fiction and science fantasy was first truly crossed and the new genre of “Space Opera” most fully realized. The film industry has taken Space Opera and run with it in the Star Wars franchise and the works of Canadian film maker James Cameron. Though of course quite entertaining, these movies showcase all that is magical and fantastical- and wrong- concerning science fiction as a predictor of the future. The collective imagination of the public has now been conditioned to violate the reality of what is possible through the violent maiming of basic scientific tenets. This artistic license was something Verne at least tried not to resort to, Wells trespassed upon more frequently, and Smith indulged in without reservation. Just as Madonna found the secret to millions by shocking a jaded audience into pouring money into her bloomers, the formula for ripping off the future has been discovered in the lowest kind of sensationalism. One need only attend a viewing of the latest Transformer movie or download Battlestar Galactica to appreciate that the entertainment industry has cashed in on the ignorance of a poorly educated society by selling intellect decaying brain candy. It is cowboys vs. aliens and has nothing of value to contribute to our culture…well, on second thought, I did get watery eyed when the young man died in Harrison Ford’s arms. I am in no way criticizing the profession of acting and value the talent of these artists- it is rather the greed that corrupts the ancient art of storytelling I am unhappy with. Directors are not directors unless they make money and I feel sorry that these incredibly creative people find themselves less than free to pursue their craft.

The archetype of the modern science fiction movie was 2001 and like many legendary screen epics, a Space Odyssey was not as original as the marketing made it out to be. In an act of cinema cold war many elements were lifted from a Soviet movie. Even though the fantasy element was restricted to a single device in the form of an alien monolith, every artifice of this film has so far proven non-predictive. Interestingly, the propulsion system of the spaceship in 2001 was originally going to use atomic bombs, which are still, a half century later, the only practical means of interplanetary travel. Stanly Kubrick, fresh from Dr. Strangelove, was tired of nukes and passed on portraying this obvious future.

As with the submarine, airplane, and nuclear energy, the technology to come may be predicted with some accuracy if the laws of physics are not insulted but rather just rudely addressed. Though in some cases, the line is crossed and what is rude turns disgusting. A recent proposal for a “NautilusX” spacecraft is one example of a completely vulgar denial of reality. Chemically propelled, with little radiation shielding, and exhibiting a ridiculous doughnut centrifuge, such advertising vehicles are far more dishonest than cinematic fabrications in that they decieve the public without the excuse of entertaining them. In the same vein, space tourism is presented as space exploration when in fact the obscene spending habits of the ultra-wealthy have nothing to do with exploration and everything to do with the attendent taxpayer subsidized business plan. There is nothing to explore in Low Earth Orbit except the joys of zero G bordellos. Rudely undressing by way of the profit motive is followed by a rude address to physics when the key private space scheme for “exploration” is exposed. This supposed key is a false promise of things to come.

While very large and very expensive Heavy Lift Rockets have been proven to be successful in escaping earth’s gravitational field with human passengers, the inferior lift vehicles being marketed as “cheap access to space” are in truth cheap and nasty taxis to space stations going in endless circles. The flim flam investors are basing their hopes of big profit on cryogenic fuel depots and transfer in space. Like the filling station every red blooded American stops at to fill his personal spaceship with fossil fuel, depots are the solution to all the holes in the private space plan for “commercial space.” Unfortunately, storing and transferring hydrogen as a liquified gas a few degrees above absolute zero in a zero G environment has nothing in common with filling a car with gasoline. It will never work as advertised. It is a trick. A way to get those bordellos in orbit courtesy of taxpayer dollars. What a deal.

So what is the obvious future that our present level of knowledge presents to us when entertaining the possible and the impossible? More to come.

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

After studying tables of current life expectancy (life expectancy increase per decade, in years, based upon United States National Vital Statistics) I found embedded a virtually perfect Fibonacci sequence. A Fibonacci sequence is a series of numbers as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …etc, where each number is the sum of the previous two. See here for more details on the Fibonacci sequence: http://www.mathacademy.com/pr/prime/articles/fibonac/index.asp
To my knowledge, this has not been described before. This is important because, based on my ideas regarding Global Brain acting as a catalyst for promoting extreme human lifespans (http://hplusmagazine.com/2011/03/04/indefinite-lifespans-a-n…l-brain/), it may help us predict with some accuracy any dramatic increases in life expectancy. For example, the model predicts that the current maximum lifespan of 110–120 years will be increased to 175 in the next 20–30 years.

In simple terms, the fact that life expectancy increases in a certain manner, and this manner obeys deep-routed and universal natural laws, indicates that it may be possible to:
1. Predict life expectancy in the near future. Based on the Fibonacci sequence,
a 90 year old today, can expect to live another 5 years
a 95 year old can expect to live another 8 years
a 103 year old can expect to live another 13 years, then…
a 116 year old can expect to live another 21 years
a 137 year old would expect to live another 34 years
a 171 year old would expect to live another 55 years
a 236 year old would expect to live another 89 years
a 325 year old can expect to live another 144 years,
and so on.

2. Question the presence of ageing and death in an ever-evolving intellectually sophisticated human (who is a valuable component of the Global Brain). Based on current facts, the Fibonacci sequence with regards to life expectancy ends abruptly when lifespan reaches the limit of approximately 120 years. Why is this so? Why should a naturally extending lifespan deviate from universal natural laws? Life expectancy should continue to increase as an individual manages to survive to a certain age. The presence of ageing and death could therefore be considered unnatural.

3. Support the notion that ‘you need to live long enough to live forever’ (see Kurzweil
http://en.wikipedia.org/wiki/Fantastic_Voyage:_Live_Long_Enough_to_Live_Forever, and also De Grey’s ‘Longevity Escape Velocity’ suggestions http://www.ted.com/index.php/talks/aubrey_de_grey_says_we_can_avoid_aging.html).

Those who manage to survive to extreme age are more likely to see their life expectancy increase even further, and so on, recursively. Kurzweil believes that this scenario will be achieved through use of technology. De Grey believes that this will be achieved via biological developments. I think that this ‘live long enough to live forever’ scenario will happen naturally (with minor input both from technology and from biological research). Those individuals who fully integrate their activities within the Global Brain will experience a natural-driven ever-increasing life expectancy.

For more details see https://acrobat.com/#d=MAgyT1rkdwono-lQL6thBQ

Marios Kyriazis

ISDHuB — International Space Development Hub — Hangar One/Nasa Ames Research Park

An aspect of support for the 100 year star ship program
A.H.Sinclair 11/11/11

For the formulation of a 100 year star ship prospectus and for a comprehensive and compatible100 year world view which will advance both the sciences of space exploration and the issues of a planetary sustainability we suggest the following discussion as being alternative to the more isolate modes of inquiry:

Technology
The star ship continuum may readily represent a “basket” of leading edge and advanced technologies. Some may have emerged already within theory and methodology, such as solar sail propulsion, laser beaming modus and experimental plasma, nuclear and fission designations. Some may not have emerged yet into even a hypothetical realization, even so we can expect that future research and development stylistics will evolve around themes that construe for a deeper knowledge of affective issues within fields of particle and energy physics and the notable materials sciences including experiential nanotechnologies, leading into the original, insightful and creative perspectives of purpose and applications which are found through a radical scientific advancement.

Although such remote and intense inquiry spearheads and poses for the pinnacle of a scientific acumen, it occurs within the larger designations as given by expansion into the solar system and the contemporaneous potentials for cis lunar and lunar development, asteroid investigation and mitigation frameworks and martian exploration. Therefore it may be said that although 100yss is a somewhat esoteric vehicle it is also an intrinsic and central part of the overall solar system expansion strategy. Within such community it is inevitable that the designs, products, applications and research brought forward by star ship technological perspectives will have effect for the many expedient space exploration platforms including those of expedient flight, duration and settlement.

100yss should not be considered as lying outside of main stream space exploration. it should be considered as leading out for main stream space exploration although such a position remains to be carefully established.

The star ship road map can establish such purpose, the star ship continuum is perhaps easily related to as a jigsaw or puzzle play into the limitation of investigation. How far will the paradigm penetrate, to discover newer forms of space propulsion, to discover the newer materials and techniques that will make so much more possible in so many space arenas, and finally to discover the moving edge of human insight for the material world as the star field destination comes into view.

The purpose of the star ship canonical road map is to lay out and formulate the lines of inquiry, to enable related and inter-disciplinary models and alliances and most significantly to provide the genuine and highly rational scientific background which postulates star ship development into a leading vehicle for the future world proficiencies. The 100yss road map and implementation structure delivers an evolving and supporting framework which may be construed as an immediate contingency within accurate focus for space exploration parameters and for research and development, educational and public outreach potentials

Society
The star ship is above all a very human vehicle, it occurs at the early moment when our planet, our only home base since we took the first steps towards the skies of a space faring species, faces the unprecedented dangers. As mankind must stand naked and alone to view the dawnings of the Anthropocene and the ending of the chapters of human history, we might indeed ask ourselves in such serious terms what is the value of the star ship? Yet such value is inestimable and incalculable if it is considered as being the inclusive vehicle of our temporal advancement.

In order to make the decisive intellectual leap we will need to adopt an inclusive and holistic world view in regard to the formulation of the many levels of the national and international space development prospectus. This inclusive viewpoint also represents the underlying sentiment of the global populations towards the inspiring perspectives which are proffered by the view of the vibrant blue dot, as we unfold the heaven above and reveal such remarkable qualities into the accessible forums of a human skill and knowledge. And it is all of one warp and weft, despite the multitudes of categorizations. We do not have any need to discriminate the mundane from the overview, from grass roots to earth orbit, a global mass communications and informational ability now gives us the original tools with which to steer and remake our planet earth, the original star ship into the formative venues of the planetary development dynamics whose sights are set on the stars.

How could such a dramatic deed be accomplished and why? The responsibility that science bears to humanity is classical, significant and it is well intended. Unfortunately or not science is the only universal medium, space science even more so. There is no other language apart from art or music which is spoken by all peoples everywhere, and science is bountiful.

Through space development we might enable what may turn out to be an adequate safety and security for all populations and through information and data revision we could enable what may turn out to be an adequate and globalized civil society assurance and protection. Such inevitable events are already well established and supported by a strong and friendly AI. The global community which seeks the Peaceful Uses of Outer Space may prove both capable and determined in applying and understanding such formative technologies, the technologies of space which will not only assist for each unseen and autonomous individual in fulfillment of the diverse requisites but also will propose and maintain for how each nation can readily fulfill that obligation. Space disseminates the largess, science for sustainability may give us all the resources that are needed for an equitable co-existence and for the optimal usage of our limited supply.

Space can do more, it can attempt to ensure the energy prospectus of a future world, stretching hundreds, thousands or millions of years into the future. The paradigm can now be readily analyzed, space based solar power may well turn out as the feasible model, and if not, ingenuity and technological proficiency will make sure that our complex calculations are the correct ones, that we do not run out before we have enough and that we pass through the transition with our eyes wide open. So much has been done already in these few short years, we have seen focus and motivation to find the solution before the problem catches up, global carbon trading and emissions cap for example. What turmoil and how brave and courageous mankind is in face of the unacceptable adversary of a climatic extinction.

The star ship speaks to us of annihilation also and of many other and strange things. SETI estimates the no of inhabited worlds and they are surely correct, but that is all a very long way away, and we are so infinitely small between the stars. Do we envision that the star ship will carry some survivors away, or even our DNA profile when nothing else is left, in that end time, some time soon perhaps. But much, much better than final foray, the star ship can return us to ourselves, to focus our understanding on outer space as offering the vehicle for planetary prosperity and this is the true meaning of the endowment of the mundane heaven. We can take the opportunity and or we can leave it aside. Science and space is impartial, the decision for insight is made for humanity and on behalf of humanity. The 100yss is the endowment of humanity, it will bring results even from inception as an formative ideal and we will surely understand very well that only the human can breathe life into the machine. There is nothing which is artificial here, we are the organic matrix of both our technology and our environment. Human cultures are diverse, but the threads which draw us together are universal. The ancient networks of culture, compassion and insight are enabled by the skillful tools of science, a turn around has arrived.

Putting It Together
Issue for 100yss is both technological and social in nature. But such far reaching paradigms do not readily see the light of day. The delivery of the message of a star ship enlightenment is not any propaganda it is a complex, subtle and sensitive process and supposes the alignment of the methodologies of both containment and endowment. The democracy and education of space is obtainable but only if the message for the purport of such global affinities can be readily located and disseminated.

For this reason we propose the establishment of ISDHuB at the ARC on Moffett Field in the heart of Silicon Valley. The hub may act as radical nexus and focus for 100yss going forward. A fortuitous circumstance will make this unique and iconic national and global asset quickly available, a time-line is obtainable through 2012, and public and educational provision may be established within the shortest possible term following on from the preparation of the partnership alliances and criteria. Our strategy is one of inclusion. We would expect the initiation of ISDHuB to be proposed and obtained through both US and International Space Agency subscriptions. Such entities may include the ARC Lunar Science Institute as a formative settlement model, along with many other distinguished US space science proviso according to interest and demand. The ARC based space science consortia within ISDHuB represent a basic ground and verification for the 100yss independent representation. 100yss road map is informed by such attributes and it will fulfill an appropriate and negotiating role as it carries the 100 year continuum forward. The function of the star ship is not only to envision and offer support for the advanced vehicles of a future space exploration it is also to propose the enduring parameters of the 100 year space based world view. We know our time is finite and we know that we must leave our careful design behind for the generations of the future world. We know that there are many problems that were not looked at or seen before, and we know how to easily solve most if not all of them. The future generations will continue to expand the horizons of knowledge, but the more provisions that we can consolidate now, the easier the struggle will be.

The hub can educate millions upon millions for the future of our world. For space as the vehicle of a planetary endowment, and for space as an ultimate destination.. We need a practical methodology of means. ISDHuB can supply the platform because it is an inclusive and obtainable working basis for this world and the worlds beyond. The diffusion of insight and appreciation is complex and personal, and that is how the democracy of space is truly represented. The research and development of 100yss may be supported by ISDHuB continuum over all the ensuing multitudes of years. Of course any physical building only stands for a certain amount of time, but the partnership that ISDHuB will bring and the enduring message that it will undertake will live on through all the vicissitudes, because the education of a peoples, a nations and a planet for the journey to the beyond, is not anything irrelevant.