Toggle light / dark theme

Laser can transform complex semiconductor properties in single-step process

A research team has successfully developed a new technology that converts the conductivity properties of semiconductors with just one laser process.

The research team successfully converted (TiO2), which conventionally works based on electrons, into a hole-based semiconductor. The Laser-Induced Oxidation and Doping Integration (LODI) technology developed by the research team can simultaneously execute oxidation and doping with just one , and it is noted as a novel conversion technology that can drastically streamline the traditional complex process.

The study is published in the journal Small. The team was led by Professor Hyukjun Kwon from the Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology.

New earthquake model goes against the grain

When a slab slides beneath an overriding plate in a subduction zone, the slab takes on a property called anisotropy, meaning its strength is not the same in all directions. Anisotropy is what causes a wooden board to break more easily along the grain than in other directions. In rock, the alignment of minerals such as clay, serpentine, and olivine can lead to anisotropy. Pockets of water in rock can also cause and enhance anisotropy, as repeated dehydration and rehydration commonly occur at depth in a subducting slab.

It is well known that an earthquake generates both a compressional wave and a shear wave. If the shear wave passes through anisotropic rock, it can split into a faster shear wave and a slower one with different polarizations.

Although seismologists routinely measure the shear wave in subduction zones by analyzing recorded seismic waveform data, it is challenging to pinpoint where splitting occurs along the wave propagation path.

Combining two brain scans uncovers hidden clues to future teen anxiety

When you’re a teenager, it’s easy to feel like the world is watching your every mistake. For some kids, that sense of self‐consciousness fades as they grow up. For others, it deepens into full‐blown anxiety.

A new study led by researchers at the USC Dornsife College of Letters, Arts and Sciences may help explain why—and could eventually make it easier to spot teens most at risk before anxiety takes hold.

The research, published in JAMA Network Open, found that combining two kinds of brain scans can better predict which teens are likely to experience greater anxiety as they get older. The work sheds new light on how the responds to mistakes and why those responses vary from person to person.

Gene Expression Predicts Therapeutic Efficacy

The immune system works to identify and target invading pathogens. Specifically, our bodies work to get rid of any harmful infections by employing a two-part immune response. The first wave of immunity is the innate immune system. This initial reaction is broad and non-specific with innate cells circulating throughout the body to detect foreign pathogens. These cells that are involved include neutrophils, macrophages, eosinophils, basophils, and dendritic cells. Once cells detect an issue, they alert the rest of the body to completely filter out the infection. Importantly, the second wave of immunity, or the adaptive immune system, elicits a strong, specific response that target pathogens the innate immune system cannot neutralize.

Adaptive immunity builds to generate robust protection against aggressive diseases. The cells that make up this response include B and T cells. B cells are mainly responsible for generating antibodies to neutralize and signal infections throughout the body. T cells are the drivers that get rid of disease. T cell activity destroys infected cells and other pathogens lingering throughout the body or site of infection. The adaptive immune response is also critical for immune memory. Once someone experiences a disease and recovers, adaptive immune cells will remember that pathogen next time it enters the body — this is how vaccines work. A patient is injected with a non-harmful virus to expose the immune system. Immediately, the body will respond and destroy the virus. However, a few T cells will also be generated to targeted similar viruses in the future. As a result, when a patient is exposed to the infection again, they will be protected and not experience symptoms.

T cells are critical for any disease or infection, including cancer. Many immunotherapies currently being develop involve activating and directing T cells to the site of the tumor. However, immunotherapies have limited efficacy due to various mechanisms around the tumor that suppress immunity. Scientists are working to understand T cell biology to develop better immunotherapies and more accurately predict treatment outcomes in patients.

/* */