Toggle light / dark theme

Reverse Aging : Small Molecule Cocktail & Epigenetic Reprogramming | Dr David Sinclair

This video provides a progress update on cutting-edge research exploring epigenetic reprogramming and small molecule cocktails for cellular rejuvenation.

Dr David Sinclair delve into the latest studies on how these approaches can potentially reverse the effects of aging at the cellular level. Topics covered include:

• The mechanisms of epigenetic reprogramming using Yamanaka factors. The development and testing of novel small molecule cocktails. Applications in various tissues and organs Research on reversing cellular senescence and restoring cell identity. The use of AI for high-throughput screening of potential rejuvenating compounds.
This update highlights recent advancements, challenges, and future directions in this exciting field of research.

* Credits to ARRD \& Dr David Sinclair*

Please note that the links below are affiliate links, so we receive a small commission when you purchase a product through the links. Thank you for your support!
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
☑ ProHealth, RENUE, DoNotAge, StemRegen, N1O1, NOVOS ☑ Coupon CODE: REVERSE

New AI Model Exposes Secrets of Genetic “Dark Matter” in Human Cells

Columbia researchers created an AI model that predicts gene activity in any human cell, advancing disease research and treatment. It has already uncovered mechanisms behind pediatric leukemia and may reveal hidden genome functions.

Researchers at Columbia University.

Columbia University is a private Ivy League research university in New York City that was established in 1754. This makes it the oldest institution of higher education in New York and the fifth-oldest in the United States. It is often just referred to as Columbia, but its official name is Columbia University in the City of New York.

DNA motors can switch direction, reshaping genetic understanding

Scientists from Delft, Vienna, and Lausanne discovered that the protein machines that shape our DNA can switch direction. Until now, researchers believed that these so-called SMC motors that make loops into DNA could move in one direction only. The discovery, which is published in Cell, is key to understanding how these motors shape our genome and regulate our genes.

“Sometimes, a cell needs to be quick in changing which genes should be expressed and which ones should be turned off, for example in response to food, alcohol or heat. To turn genes off and on, cells use Structural Maintenance of Chromosomes (SMC) motors that act like switches to connect different parts of DNA,” first author Roman Barth explains.

“However, SMC machines don’t naturally know which parts to connect. They simply load somewhere on the DNA and start shaping it into a loop until they reach a point where they are forced to stop. That’s why they rely heavily on the ability to explore both sides of the DNA to find the right stop signs.”

Newly discovered mechanism enables precise gene regulation by combining DNA and RNA epigenetics

Our genes contain all the instructions our body needs to function, but their expression must be finely regulated to guarantee that each cell performs its role optimally. This is where DNA and RNA epigenetics come in: a series of mechanisms that act as “markers” on genes, to control their activity without modifying the DNA or RNA sequence itself.

Until now, DNA and RNA epigenetics were studied as independent systems. These two mechanisms seemed to function separately, each playing its own role in distinct stages of the gene regulation process.

Perhaps that was a mistake.

An Entire Book Was Written in DNA—and You Can Buy It for $60

As the rate of humanity’s data creation increases exponentially with the rise of AI, scientists have been interested in DNA as a way to store digital information. After all, DNA is nature’s way of storing data. It encodes genetic information and determines the blueprint of every living thing on earth.

And DNA is at least 1,000 times more compact than solid-state hard drives. To demonstrate just how compact, researchers have previously encoded all of Shakespeare’s 154 sonnets, 52 pages of Mozart’s music, and an episode of the Netflix show “Biohackers” into tiny amounts of DNA.

But these were research projects or media stunts. DNA data storage isn’t exactly mainstream yet, but it might be getting closer. Now you can buy what may be the first commercially available book written in DNA. Today, Asimov Press debuted an anthology of biotechnology essays and science fiction stories encoded in strands of DNA. For $60, you can get a physical copy of the book plus the nucleic acid version—a metal capsule filled with dried DNA.

What Is Cell Senescence And Inflammaging? Matt Yousefzadeh, PhD

What is cell senescence and inflammaging?

Featuring Matt Yousefzadeh, PhD


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

Study explores link between people’s professions and their genetic predisposition to neuropsychiatric traits

Polygenic scores (PGS) are metrics used to estimate the genetic predisposition of people to developing specific mental health conditions, personality traits or diseases. In recent years, these metrics have often been used to investigate the intricate connections between genes and environmental factors.

Researchers at the JJ Peters VA Medical Center, Icahn School of Medicine at Mount Sinai and other institutes recently carried out a study aimed at determining whether neuropsychiatric could predict the professional categories that individuals belong to. Their findings, published in Nature Human Behaviour, suggest that these scores weakly predict the professional category that people belong to.

“Neuropsychiatric disorders are both common and highly heritable, yet they remain heavily stigmatized,” Georgios Voloudakis, first author of the paper, told Medical Xpress.

DNA Nanorobots Unlock New Frontiers in Targeted Drug Delivery

Scientists develop DNADNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA). tabindex=0 DNA nanorobots capable of modifying artificial cells.

Immune Cell Dysfunction Causes Aging: Matt Yousefzadeh, PhD

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Gene mutation in roots that enhances microbe partnerships could cut fertilizer use

Researchers have discovered a biological mechanism that makes plant roots more welcoming to beneficial soil microbes. This discovery by John Innes Centre researchers paves the way for more environmentally friendly farming practices, potentially allowing farmers to use less fertilizer.

Production of most major crops relies on nitrate and phosphate fertilizers, but excessive fertilizer use harms the environment. If we could use mutually beneficial relationships between and soil microbes to enhance , then we could potentially reduce the use of inorganic fertilizers.

Researchers in the group of Dr. Myriam Charpentier discovered a mutation in a gene in the legume Medicago truncatula that reprograms the signaling capacity of the plant so that it enhances partnerships with nitrogen fixing bacteria called rhizobia and arbuscular mycorrhiza fungi (AMF) which supply roots with phosphorus.

/* */