Toggle light / dark theme

What’s The Biochemistry Of Fitness In 80yr Olds?

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Fundamental engineering principles can help identify disease biomarkers more quickly

People often compare the genome to a computer’s program, with the cell using its genetic code to process environmental inputs and produce appropriate responses.

But the machine metaphor can be extended even further to any , and applying established concepts of engineering to biology could revolutionize how scientists make their observations within biology, according to research from University of Michigan.

In a paper published in Proceedings of the National Academy of Sciences, Indika Rajapakse, Ph.D., Joshua Pickard, Ph.D. (now an Eric and Wendy Schmidt Postdoctoral Fellow at the Broad Institute), and their team propose that fundamental principles of and observability can be applied to study that change over time.

DNA repair mechanisms help explain why naked mole-rats live a long life

Naked mole-rats are one of nature’s most extraordinary creatures. These burrowing rodents can live for up to 37 years, around ten times longer than relatives of a similar size. But what is the secret to their extreme longevity? How are they able to delay the decay and decline that befalls other rodents? The answer, at least in part, is due to a switch in a common protein that boosts DNA repair, according to new research published in the journal Science.

One of the main causes of aging in all animals, including humans, is the accumulation of damaged DNA, our genetic instruction manual. When this damage is not fixed, it leads to , damaged proteins and eventually a breakdown in the body’s functions.

To understand how the naked mole-rat is so resistant to DNA damage, a study led by researchers at Tongji University in China focused on a common protein called cGAS (cyclic GMP-AMP synthase). In most mammals, cGAS interferes with DNA repair, but the researchers suspected it may have evolved a different function in the long-living rats.

New tool offers single-cell study of specific genetic variants

Scientists have long suspected connections between heredity and disease, dating back to Hippocrates, who observed certain diseases “ran in families.” However, through the years, scientists have kept getting better at finding ways to also understand the source of those genetic links in the human genome.

EMBL scientists and collaborators have now developed a tool that goes beyond current single-cell technology by capturing genomic variations and RNA together in the same cell, increasing precision and scalability compared to previous technologies. Able to determine variations in non-coding regions of the genome, this tool transforms how scientists can study the parts of DNA where variations linked to disease are most likely to occur. This single-cell tool, with its high precision and throughput, represents an important advance in drawing correlations between genetic variants and disease.

“This has been a long-standing problem, as current single-cell methods to study DNA and RNA in the same cell have had limited throughput, lacked sensitivity, and are complicated,” said Dominik Lindenhofer, the lead author on a new paper about SDR-Seq published in Nature Methods and a postdoctoral fellow in EMBL’s Steinmetz Group.

Genetically engineered pig-to-human liver xenotransplantation

The advent of genetically edited porcine-to-human xenotransplantation has predominantly focused on cardiac and renal applications, with no reported cases of porcine-to-human liver xenotransplantation. This study presents the world’s first successful genetically modified pig auxiliary liver xenotransplantation in a living human, achieving an unprecedented survival of 171 days, and provides valuable insights into the critical factors influencing the procedure’s success.

Genetically encoded biosensor tracks plants’ immune hormone in real time

From willow bark remedies to aspirin tablets, salicylic acid has long been part of human health. It also lies at the heart of how plants fight disease. Now, researchers at the University of Cambridge have developed a pioneering biosensor that allows scientists to watch, for the first time, how plants deploy this critical immune hormone in their battle against pathogens.

Published in Science, Dr. Alexander Jones’s group at the Sainsbury Laboratory, Cambridge University (SLCU) presents SalicS1, a genetically encoded biosensor that can detect and track the dynamics of the plant immune hormone (SA) with exquisite precision inside living plants.

Salicylic acid is a central regulator of plant immunity, triggering defense responses against a huge diversity of invaders. Until now, however, scientists have lacked the tools to measure SA at high enough spatial and to understand how plants balance growth with immune defense.

1 Gene, 1 Disease no More — Acknowledging The Full Complexity of Genetics Could Improve And Personalize Medicine

Your DNA contains millions of genetic variants that interact with each other in ways that affect whether diseases such as schizophrenia and heart disease develop, and with what severity.

Ancient DNA reveals prehistoric connections and a patrilineal society in early China

Scientists from Peking University have uncovered new genetic evidence that sheds light on how prehistoric people in China interacted, migrated, and built their communities. Led by Professors Huang Yanyi and Pang Yuhong from the Biomedical Pioneering Innovation Center (BIOPIC), the research reveals the first direct genetic proof of a patrilineal social system in Neolithic China.

The study, conducted in collaboration with Yunnan University and Minzu University of China, was published in Nature Communications on September 30, 2025.

The story of Chinese civilization begins along two : the Yellow River, known for its millet-farming cultures, and the Yangtze River, home to early rice agriculture. How people in these regions exchanged ideas, adapted to environmental shifts, and shaped early societies has long fascinated archaeologists and historians.

/* */