Toggle light / dark theme

A Paradigm Shift in Evolutionary Biology: The Extended Evolutionary Synthesis and the Role of Epigenetics

The field of evolutionary biology has a rich and complex history, marked by periods of consensus and significant theoretical shifts. The cornerstone of modern evolutionary thought for much of the 20th century was the Modern Synthesis (MS), a theoretical framework that integrated Darwin’s theory of natural selection with Mendelian genetics.

It provided a powerful and elegant explanation for how evolution occurs, emphasizing the gradual accumulation of genetic mutations and their differential survival in a population. However, in recent decades, a growing body of evidence has begun to challenge the sufficiency of the MS, leading to the development of a new, more comprehensive framework: the Extended Evolutionary Synthesis (EES).

Researchers uncover dozens of traits driven by maternal versus paternal genes

Researchers developed a high-accuracy method to infer whether genetic variants come from the mother or father without needing parental genomes, analysing 286,666 UK Biobank participants. They uncovered over 30 parent-of-origin effects on traits from growth and metabolism to diabetes, many showing opposite effects depending on parental source.

Replacing brain immune cells in mice slows neurodegeneration in Stanford Medicine study

By Krista Conger

The technique, which used genetically healthy donor cells, prolonged life and function in mice with a disease similar to Tay-Sachs. It may help with other neurodegenerative diseases like Alzheimer’s.

CRISPR-GPT Turns Novice Scientists into Gene Editing Experts

CRISPR technology has revolutionized biology, largely because of its simplicity compared to previous gene editing techniques. However, it still takes weeks to learn, design, perform, and analyze CRISPR experiments; first-time CRISPR users often end up with low editing efficiencies and even experts can make costly mistakes.

In a new study, researchers from Stanford University, Princeton University, and the University of California, Berkeley, teamed up with Google DeepMind to create CRISPR-GPT, an artificial intelligence (AI) tool that can guide researchers through every aspect of CRISPR editing from start to finish in as little as one day.1 The results, published in Nature Biomedical Engineering, demonstrate that researchers with no previous CRISPR experience could achieve up to 90 percent efficiency in their first shot at gene editing using the tool.

CRISPR-GPT is a large language model (LLM), a type of AI model that uses text-based input data. Led by Le Cong of Stanford University and Mengdi Wang of Princeton University, the team trained the model on over a decade of expert discussions, as well as established protocols and peer-reviewed literature. They designed it to cover gene knockout, base editing, prime editing, and epigenetic editing systems, and benchmarked the tool against almost 300 test questions and answers.

First gene-edited islet transplant in a human passes functional trial

Uppsala University Hospital-led investigators report that gene-edited donor islet cells survived 12 weeks inside a man with long-standing type 1 diabetes without any immunosuppressive medication.

Intensive insulin therapy can delay complications and improve life expectancy. Early-onset type 1 diabetes remains linked to reduced quality of life, serious cardiovascular risk, and shortened lifespan. Toxicity from lifelong immune suppression also drives morbidity and mortality in organ recipients.

In the study, “Survival of Transplanted Allogeneic Beta Cells with No Immunosuppression,” published in the New England Journal of Medicine, researchers conducted a first-in-human open-label trial to test whether hypoimmune-engineered islet cells could evade rejection.

Chinese Scientists Unveil Major Breakthrough in Large-scale DNA Editing

Chinese scientists have developed a gene editing technology capable of precisely manipulating large DNA segments ranging from thousands to millions of base pairs in both plant and animal cells, marking a significant advance in the field of life sciences.

The research team from the Institute of Genetics and Developmental Biology at the Chinese Academy of Sciences announced the new technology in a study published online Monday in the journal Cell.

The method, called PCE (Programmable Chromosomal Engineering), combines three innovative techniques to enable programmable editing of large chromosome segments. In lab tests, researchers successfully inserted an 18,800-base-pair DNA fragment, replaced a 5,000-base-pair sequence, inverted a 12-million-base-pair chromosomal region, deleted a 4-million-base-pair segment, and even relocated entire chromosomes.

Ultra-short RNA insertions offer scalable, cost-effective gene silencing for agriculture

A team of researchers from the Spanish National Research Council has made a significant advance in plant biotechnology by developing a new method for silencing genes. The novel technique uses ultra-short ribonucleic acid (RNA) sequences carried by genetically modified viruses to achieve genetic silencing, allowing the customization of plant traits. The work, published in the Plant Biotechnology Journal, opens up new avenues for crop improvement, functional genomics, and sustainable agriculture.

Viral vector technology involves modifying viruses, removing the genetic material that causes disease, to turn them into vehicles that carry the RNA sequence to be introduced into an organism. This technique, when applied to plants, has already proven effective under experimental conditions in inducing flowering and accelerating the development of improved crop varieties, modifying plant architecture to facilitate adaptation to mechanization, improving drought tolerance, and producing metabolites beneficial to human health, among other applications.

Now, the method developed by the CSIC, together with the Valencian University Institute for Research on the Conservation and Improvement of Agrodiversity (COMAV) and the Italian Department of Applications and Innovation in Supercomputing (Cineca), represents an optimization of technological platforms to accelerate the development and validation of agricultural applications based on viral vectors.

Scientists map the genes behind diet and dementia risk

Concordance was high between imputed and sequenced APOE genotypes. Moreover, the researchers replicated known GWAS associations with diet-related biomarkers.

The authors also noted several limitations to provide context for future research. These include that the study population was predominantly of European ancestry, which may limit the generalizability of findings, and that the specific participant criteria (e.g., overweight, family history of dementia) mean the resource is not representative of the general population. They also advise that potential batch effects from specimen type and study site should be accounted for in future analyses.

This genetic resource enables analyses of genetic contributions to variability in cognitive responses to the MIND diet, supporting integrative analysis with other data types to delineate underlying biological mechanisms. The data will be made available to other researchers via The National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS).

Scientists just cracked the code to editing entire chromosomes flawlessly

A group of Chinese scientists has created powerful new tools that allow them to edit large chunks of DNA with incredible accuracy—and without leaving any trace. Using a mix of advanced protein design, AI, and clever genetic tweaks, they’ve overcome major limitations in older gene editing methods. These tools can flip, remove, or insert massive pieces of genetic code in both plants and animals. To prove it works, they engineered rice that’s resistant to herbicides by flipping a huge section of its DNA—something that was nearly impossible before.

/* */