Toggle light / dark theme

New Huntington’s Disease Therapy Slows Patients’ Disease by 75%

Huntington’s disease is a genetic disorder that is caused by an unusual number of repeats in the huntingtin gene; there make the gene too long, and lead to the production of a toxic protein in brain cells. Symptoms of the disease tend to arise when a person is in their 30s or 40s and it is typically fatal within 20 years. New work may change that, however.

Professor Dragan Primorac, MD, PhD — Shaping The Future Of Personalized Medicine

Shaping The Future Of Personalized Medicine — Professor Dragan[ ](https://www.facebook.com/PrimoracDragan?__cft__[0]=AZWpslTHjsy1a1kjedsti2RJw9yv6FhOXDFg2kyiufa2-D4Gk8TYoTy6HPaDPGARaq1EESF8mpBiV9Jjt2gpkh8Np3gpvzqTNu4cOTW-m31Hn4MVmEFyC6gnP5_-bMEdn1Gn81MUYh3llD5MqtPqF8dPWOZxq1Oo7MbC2g5664Of2FI4tc98YxJrFewUmig_tH0&__tn__=-]K-R)Primorac MD, PhD — Founder, St. Catherine Specialty Hospital


Professor Dragan Primorac, MD., PhD (https://www.draganprimorac.com/) is a globally recognized physician-scientist whose work spans personalized medicine, regenerative therapies, and forensic genetics.

From 2003 to 2009 Prof. Primorac served as the Minister of Science, Education and Sports of the Republic of Croatia. The Ministry of Science and Education of Croatia is the ministry in the Government of Croatia which is in charge of primary, secondary and tertiary education, research institutions and sports (https://mzom.gov.hr/en).

Prof. Primorac is the Founder of St. Catherine Specialty Hospital in Zagreb Croatia (https://www.stcatherine.com/), the official hospital of the Croatian Olympic Committee as well as the official hospital of the Croatian Football Federation. St. Catherine Hospital is affiliated with four medical schools and the Ministry of Science and Education recently announced that the St. Catherine Hospital became Scientific Center of Excellence for the Personalized Medicine\.

AI and optogenetics enable precise Parkinson’s diagnosis and treatment in mice

Globally recognized figures Muhammad Ali and Michael J. Fox have long suffered from Parkinson’s disease. The disease presents a complex set of motor symptoms, including tremors, rigidity, bradykinesia, and postural instability. However, traditional diagnostic methods have struggled to sensitively detect changes in the early stages, and drugs targeting brain signal regulation have had limited clinical effectiveness.

Recently, Korean researchers successfully demonstrated the potential of a technology that integrates AI and optogenetics as a tool for precise diagnosis and therapeutic evaluation of Parkinson’s disease in mice. They have also proposed a strategy for developing next-generation personalized treatments.

A collaborative research team, comprising Professor Won Do Heo’s team from the Department of Biological Sciences, Professor Daesoo Kim’s team from the Department of Brain and Cognitive Sciences, and Director Chang-Jun Lee’s team from the Institute for Basic Science (IBS) Center for Cognition and Sociality, achieved a preclinical research breakthrough by combining AI analysis with optogenetics.

Bridge recombinases, optimized for human cells, enable massive programmable DNA rearrangements

For decades, gene-editing science has been limited to making small, precise edits to human DNA, akin to correcting typos in the genetic code. Arc Institute researchers are changing that paradigm with a universal gene editing system that allows for cutting and pasting of entire genomic paragraphs, rearranging whole chapters, and even restructuring entire passages of the genomic manuscript.

Scientific breakthrough leads to ‘fluorescent biological qubit’ — it could mean turning your cells into quantum sensors

Fluorescent proteins, which can be found in a variety of marine organisms, absorb light at one wavelength and emit it at another, longer wavelength; this is, for instance, what gives some jellyfish the ability to glow. As such, they are used by biologists to tag cells through the genetic encoding and in the fusing of proteins.

The researchers found that the fluorophore in these proteins, which enables the immittance of light, can be used as qubits due to their ability to have a metastable triplet state. This is where a molecule absorbs light and transitions into an excited state with two of its highest-energy electrons in a parallel spin. This lasts for a brief period before decaying. In quantum mechanical terms, the molecule is in a superposition of multiple states at once until directly observed or disrupted by an external interference.

Enhanced CAR T cells emerge from genetic screening

CAR T cells are patient-derived, genetically engineered immune cells. They are “living drugs” and constitute a milestone in modern medicine. Equipping T cells, a key cell type of the immune system, with a “chimeric antigen receptor” (CAR) enables them to specifically recognize and attack cancer cells.

CAR T cell therapy has demonstrated its potential by curing patients with otherwise untreatable blood cancers. But it still fails for most patients, often due to T cell intrinsic dysfunction. To address their current limitations and to make CAR T cells intrinsically stronger, scientists at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences and the Medical University of Vienna have developed a new method for systematic discovery of genetic boosters of CAR T cell function.

The new study, published in Nature, introduces CELLFIE, a CAR T cell engineering and high-content CRISPR screening platform, enabling researchers to systematically modify CAR T cells and evaluate their therapeutic potential.

Nectandrin B (Found In Nutmeg) Extends Lifespan As Much As Rapamycin

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Novel gene therapy for hereditary hearing loss developed at Tel Aviv University

Scientists from the Gray Faculty of Medical & Health Sciences at Tel Aviv University introduced an innovative gene therapy method to treat impairments in hearing and balance caused by inner ear dysfunction. According to the researchers, “This treatment constitutes an improvement over existing strategies, demonstrating enhanced efficiency and holds promise for treating a wide range of mutations that cause hearing loss.”

The study was led by Prof. Karen Avraham, Dean of the Gray Faculty of Medical & Health Sciences, and Roni Hahn, a PhD student from the Department of Human Molecular Genetics and Biochemistry. The study was conducted in collaboration with Prof. Jeffrey Holt and Dr. Gwenaëlle Géléoc from Boston Children’s Hospital and Harvard Medical School and was supported by the US-Israel Binational Science Foundation (BSF), the National Institutes of Health/NIDCD and the Israel Science Foundation Breakthrough Research Program. The study was featured on the cover of the journal EMBO Molecular Medicine.

Prof. Avraham explains: “The inner ear consists of two highly coordinated systems: the auditory system, which detects, processes, and transmits sound signals to the brain, and the vestibular system, which enables spatial orientation and balance. A wide range of genetic variants in DNA can affect the function of these systems, leading to sensorineural hearing loss and balance problems. Indeed, hearing loss is the most common sensory impairment worldwide, with over half of congenital cases caused by genetic factors. In this study, we aimed to investigate an effective gene therapy for these cases using an approach that has not been applied in this context before.”

Pest resistance threatens corn industry’s newest biotech defense, study warns

Corn rootworms, pests responsible for billions of dollars in yearly crop losses, are evolving resistance that weakens even the latest biotechnology controls, according to a new study published in the journal Proceedings of the National Academy of Sciences.

Drawing on decades of data across multiple states, University of Arizona entomologists found that field-evolved to Bacillus thuringiensis, or Bt, is undermining the effectiveness of corn that targets rootworms with the combination of Bt and RNA interference, or RNAi, a new biotech control that turns the rootworms’ own genetic instructions against them.

The research team analyzed extensive field data collected over the past two decades in 12 previous studies, including millions of rootworms evaluated across the Corn Belt, which extends from western Ohio to eastern Nebraska and northeastern Kansas.

Drinking any amount of alcohol likely increases dementia risk

Drinking any amount of alcohol likely increases the risk of dementia, suggests the largest combined observational and genetic study to date, published in BMJ Evidence-Based Medicine.

Even light drinking—generally thought to be protective, based on observational studies—is unlikely to lower the risk, which rises in tandem with the quantity of alcohol consumed, the research indicates.

Current thinking suggests that there might be an “optimal dose” of alcohol for brain health, but most of these studies have focused on and/or didn’t differentiate between former and lifelong non-drinkers, complicating efforts to infer causality, note the researchers.

/* */