БЛОГ

Archive for the ‘genetics’ category: Page 12

Nov 10, 2024

A Cloned Ferret Has Given Birth for the First Time in History, Marking a Win for Her Endangered Species

Posted by in categories: biotech/medical, genetics

Antonia, a cloned black-footed ferret at the Smithsonian’s National Zoo and Conservation Biology Institute, has produced two healthy offspring that will help build genetic diversity in their recovering population.

Nov 10, 2024

Did egg or chicken come first? A protist suggests it was the egg!

Posted by in categories: biotech/medical, genetics

The world is full of unusual unicellular organisms and microbes, many of which have not been discovered yet. In 2017, scientists identified a single-celled marine organism called Chromosphaera perkinsii in sediments collected from Hawaii. This species is estimated to be over a billion years old, making it older than the world’s most ancient animals. Researchers determined that this species has significant similarities to some animal embryos, though it is typically unicellular. The findings, which have been reported in Nature, suggested that some of the genetic mechanisms underlying complex life are present in C. perkinsii, or that it has evolved those characteristics independently.

The investigators noted that this study seems to answer the question of whether the chicken came before the egg; it was apparently the egg, since the genetic tools for making eggs existed prior to the emergence of chickens.

Nov 10, 2024

The laws of physics are not fixed | João Magueijo

Posted by in categories: cosmology, genetics, quantum physics

Did the laws of physics come into being at the Big Bang?

Watch the full talk at https://iai.tv/video/the-laws-of-physics-are-not-fixed-joao-…escription.

Continue reading “The laws of physics are not fixed | João Magueijo” »

Nov 10, 2024

“Astonishing” — Scientists Unveil First Blueprint of the Most Complex Molecular Machine in Human Biology

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Scientists at the Centre for Genomic Regulation (CRG) in Barcelona have developed the first comprehensive blueprint of the human spliceosome, the most complex and intricate molecular machine found in every cell. This groundbreaking achievement, over a decade in the making, was published in the journal Science.

The spliceosome edits genetic messages transcribed from DNA, allowing cells to create different versions of a protein from a single gene. The vast majority of human genes – more than nine in ten – are edited by the spliceosome. Errors in the process are linked to a wide spectrum of diseases including most types of cancer, neurodegenerative conditions, and genetic disorders.

The sheer number of components involved and the intricacy of its function has meant the spliceosome has remained elusive and uncharted territory in human biology – until now.

Nov 10, 2024

An easier-to-use technique for storing data in DNA is inspired by our cells

Posted by in categories: biotech/medical, chemistry, genetics

The new method, published in Nature last week, is more efficient, storing 350 bits at a time by encoding strands in parallel. Rather than hand-threading each DNA strand, the team assembles strands from pre-built DNA bricks about 20 nucleotides long, encoding information by altering some and not others along the way. Peking University’s Long Qian and team got the idea for such templates from the way cells share the same basic set of genes but behave differently in response to chemical changes in DNA strands. “Every cell in our bodies has the same genome sequence, but genetic programming comes from modifications to DNA. If life can do this, we can do this,” she says.

Qian and her colleagues encoded data through methylation, a chemical reaction that switches genes on and off by attaching a methyl compound—a small methane-related molecule. Once the bricks are locked into their assigned spots on the strand, researchers select which bricks to methylate, with the presence or absence of the modification standing in for binary values of 0 or 1. The information can then be deciphered using nanopore sequencers to detect whether a brick has been methylated. In theory, the new method is simple enough to be carried out without detailed knowledge of how to manipulate DNA.

The storage capacity of each DNA strand caps off at roughly 70 bits. For larger files, researchers splintered data into multiple strands identified by unique barcodes encoded in the bricks. The strands were then read simultaneously and sequenced according to their barcodes. With this technique, researchers encoded the image of a tiger rubbing from the Han dynasty, troubleshooting the encoding process until the image came back with no errors. The same process worked for more complex images, like a photorealistic print of a panda.

Nov 9, 2024

GM Apples That Don’t Brown to Reach U.S. Shelves This Fall

Posted by in categories: biological, genetics

Year 2017 face_with_colon_three


Can genetic modification appeal to consumers? A new apple will test the market.

Nov 9, 2024

Unlocking Genetic Clues to Teen Behavior and Mental Health

Posted by in categories: genetics, neuroscience

A multitude of genetic, behavioral, and environmental factors come together to create mental health problems in teens.

Using a broad genetic trawling method, scientists at Washington University identified connections between genetic risk factors and behaviors like screen time and stressful life events in youth. Their findings highlight potential areas for intervention to mitigate the risk of psychiatric disorders.

Genetic Research in Youth Behavior.

Nov 9, 2024

All DNA And RNA Bases Have Now Been Discovered In Meteorites

Posted by in categories: biotech/medical, genetics

Meteorites hold all five DNA and RNA bases, hinting that life’s ingredients may come from space!

Meteorites Contain All DNA and RNA Bases, Hinting at Space Origins for Life

A recent study published in Nature Communications reveals that meteorites contain the five nucleobases essential for life’s genetic code, suggesting a possible extraterrestrial origin for some of life’s building blocks. Scientists, including astrochemist Daniel Glavin from NASA’s Goddard Space Flight Center and geochemist Yasuhiro Oba from Hokkaido University, discovered adenine, guanine, cytosine, thymine, and uracil in meteorites that landed in various locations around the world. These nucleobases combine with sugars and phosphates to create DNA and RNA, the molecules responsible for storing genetic information in all life on Earth.

Nov 9, 2024

Scientists to mimic neutron star conditions in lab with supersolid breakthrough

Posted by in categories: biotech/medical, genetics

An international team of researchers has provided a genetic diagnosis for 30 individuals whose condition was undiagnosed for years despite extensive clinical or genetic testing. The study, conducted by researchers at Baylor College of Medicine, National University of Singapore and collaborating institutions worldwide, was published in Genetics in Medicine.

“The story of our findings began with one patient I saw in the clinic presenting an uncommon combination of problems,” said first and co-corresponding author Dr. Daniel Calame, instructor of pediatric neurology and developmental neurosciences at Baylor.

“The patient had severe developmental conditions, epilepsy and complete insensitivity to pain, which was very atypical. The condition had remained undiagnosed despite numerous tests conducted by geneticists and neurologists.”

Nov 8, 2024

MIT Scientists Develop New Way To Treat the Brain — Without Invasive Implants or Genetic Tweaks

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology, neuroscience

Novel magnetic nanodiscs could provide a much less invasive way of stimulating parts of the brain, paving the way for stimulation therapies without implants or genetic modification, MIT researchers report.

The scientists envision that the tiny discs, which are about 250 nanometers across (about 1/500 the width of a human hair), would be injected directly into the desired location in the brain. From there, they could be activated at any time simply by applying a magnetic field outside the body. The new particles could quickly find applications in biomedical research, and eventually, after sufficient testing, might be applied to clinical uses.

The development of these nanoparticles is described in the journal Nature Nanotechnology, in a paper by Polina Anikeeva, a professor in MIT’s departments of Materials Science and Engineering and Brain and Cognitive Sciences, graduate student Ye Ji Kim, and 17 others at MIT and in Germany.

Page 12 of 516First910111213141516Last