БЛОГ

Archive for the ‘genetics’ category: Page 169

Sep 22, 2021

A genetic brain disease reversed after birth

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

As this is the first report of neuro-inflammation in Kleefstra syndrome, the next step is to find out if it also occurs in the human condition. Shinkai believes the chances are high and says he would not be surprised if other neurological diseases caused by epigenetic dysregulation were also related to abnormal inflammation in the brain.


Researchers at the RIKEN Cluster for Pioneering Research (CPR) in Japan report that Kleefstra syndrome, a genetic disorder that leads to intellectual disability, can be reversed after birth in a mouse model of the disease. Published in the scientific journal iScience, the series of experiments led by Yoichi Shinkai showed that postnatal treatment resulted in improved symptoms, both in the brain and in behavior.

Normally, we get two good copies of most genes, one from each parent. In Kleefstra , one copy of the EHMT1 gene is mutated or missing. This leads to half the normal amount of GLP, a protein whose job is to control genes related to brain development through a process called H3K9 methylation. Without enough GLP, H3K9 methylation is also reduced, and the connections between neurons in the brain do not develop normally. The result is and autistic-like symptoms. “We still don’t know if Kleefstra syndrome is a curable disease after birth or how this epigenetic dysregulation leads to the ,” says Shinkai. “Our studies in have provided new information about what causes the behavioral abnormalities associated with the syndrome and have shown that a cure is a real possibility in the future.”

Continue reading “A genetic brain disease reversed after birth” »

Sep 22, 2021

Do Microbes Make Us Social?

Posted by in categories: biological, evolution, genetics, neuroscience

Microbes may have influenced the evolution of the social brain and behavior as a means to propagate their own genetic material.

—Cryan, Dinan, et al., November 2,019 Science.


In an effort to extend their territory, microbes may push us to socialize.

Sep 21, 2021

GSK teams with King’s College to use AI to fight cancer

Posted by in categories: biotech/medical, genetics, robotics/AI

The pharmaceuticals firm GSK has struck a five-year partnership with King’s College London to use artificial intelligence to develop personalised treatments for cancer by investigating the role played by genetics in the disease.

The tie-up, which involves 10 of the drug maker’s artificial intelligence experts working with 10 oncology specialists from King’s across their labs, will use computing to “play chess with cancer”, working out why only a fifth of patients respond well to immuno-oncology treatments.

Sep 20, 2021

Eight Diseases That CRISPR Technology Could Cure

Posted by in categories: bioengineering, biotech/medical, genetics

CRISPR technology offers the promise to cure any human genetic disease with gene editing; which one will be the first?

CRISPR-Cas9 was first used as a gene-editing tool in 2012. In just a few years, the technology has exploded in popularity thanks to its promise of making gene editing much faster, cheaper, and easier than ever before.

CRISPR is short for ‘clustered regularly interspaced short palindromic repeats.’ The term makes reference to a series of repetitive patterns found in the DNA of bacteria that form the basis of a primitive immune system, defending them from viral invaders by cutting their DNA.

Sep 20, 2021

Ancient DNA rewrites early Japanese history —modern day populations have tripartite genetic origin

Posted by in categories: biotech/medical, genetics

Ancient DNA extracted from human bones has rewritten early Japanese history by underlining that modern day populations in Japan have a tripartite genetic origin—a finding that refines previously accepted views of a dual genomic ancestry.

Twelve newly sequenced ancient Japanese genomes show that modern day populations do indeed show the genetic signatures of early indigenous Jomon hunter-gatherer-fishers and immigrant Yayoi farmers—but also add a third genetic component that is linked to the Kofun peoples, whose culture spread in Japan between the 3rd and 7th centuries.

Sep 20, 2021

TRNA therapies could help restore proteins lost in translation

Posted by in categories: bioengineering, biotech/medical, genetics

He explored the possibility of using gene therapy or gene editing—technologies that were dominating headlines for their ability to tackle other rare genetic disorders. But scientists told him those approaches would be difficult to implement for Dravet. Instead, a newfangled idea called transfer RNA (tRNA) therapy seemed like it might be the answer.


Drug Discovery tRNA therapies could help restore proteins lost in translation.

A new class of therapies based on transfer RNA could treat forms of cystic fibrosis, muscular dystrophy, genetic epilepsies, and more by.

Continue reading “TRNA therapies could help restore proteins lost in translation” »

Sep 19, 2021

A paradigm shift in aging research?

Posted by in categories: biotech/medical, genetics, life extension

This is the video of Harold Katcher’s presentation to the London Futurists. It was a great discussion, be sure to check it out.

#haroldkatcher #antiaging #rejuvenation #futurism

Continue reading “A paradigm shift in aging research?” »

Sep 19, 2021

Harvard cracks DNA storage, crams 700 terabytes of data into a single gram

Posted by in categories: bioengineering, biotech/medical, computing, genetics

Circa 2012.


A bioengineer and geneticist at Harvard’s Wyss Institute have successfully stored 5.5 petabits of data — around 700 terabytes — in a single gram of DNA, smashing the previous DNA data density record by a thousand times.

The work, carried out by George Church and Sri Kosuri, basically treats DNA as just another digital storage device. Instead of binary data being encoded as magnetic regions on a hard drive platter, strands of DNA that store 96 bits are synthesized, with each of the bases (TGAC) representing a binary value (T and G = 1 A and C = 0).

Continue reading “Harvard cracks DNA storage, crams 700 terabytes of data into a single gram” »

Sep 18, 2021

Time Until Dementia Symptoms Appear Can Be Estimated via Brain Scan

Posted by in categories: biotech/medical, genetics, information science, neuroscience

“You may hit the tipping point when you’re 50; it may happen when you’re 80; it may never happen,” Schindler said. “But once you pass the tipping point, you’re going to accumulate high levels of amyloid that are likely to cause dementia. If we know how much amyloid someone has right now, we can calculate how long ago they hit the tipping point and estimate how much longer it will be until they are likely to develop symptoms.”


Summary: A new algorithm uses neuroimaging data of amyloid levels in the brain and takes into account a person’s age to determine when a person with genetic Alzheimer’s risk factors, and with no signs of cognitive decline, will develop the disease.

Source; WUSTL

Continue reading “Time Until Dementia Symptoms Appear Can Be Estimated via Brain Scan” »

Sep 17, 2021

Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

Progress.


Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.