БЛОГ

Archive for the ‘genetics’ category: Page 236

Jun 24, 2020

Massive genomic database helps decode mutations’ effects

Posted by in categories: biotech/medical, genetics, neuroscience

A trove of DNA sequences from 141,456 people — and counting — offers researchers an unparalleled look at genetic variation across the general population1,2. The resource has been helping researchers to identify variants that contribute to autism since it was released online about four years ago3,4.

The genomes of autistic people harbor hundreds of potentially harmful mutations. But to firmly connect a specific variant to the condition, researchers need to see if it is common among typical people — a sign that that variant may actually be benign.

In 2014, researchers debuted one of the first tools to probe the prevalence of a mutation in the general population. Known as the Exome Aggregation Consortium (ExAC), it contained 60,000 sequences of exomes — the protein-coding regions of the genome5.

Jun 24, 2020

Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors

Posted by in categories: genetics, neuroscience

Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment.

Jun 24, 2020

UK to launch world’s largest genetic study into chronic fatigue syndrome

Posted by in categories: biotech/medical, genetics, neuroscience

The world’s largest genetic study into chronic fatigue syndrome is to be launched in the UK after receiving £3.2m of funding from the Medical Research Council and National Institute for Health Research.

The research aims to shine a light on the debilitating long-term condition, about which little is known, by collecting DNA samples from 20,000 people who have CFS, also known as myalgic encephalomyelitis (ME).

CFS is believed to affect about 250,000 people in the UK and has been estimated to cost the economy billions of pounds each year. Individuals experience exhaustion that is not helped by rest, with one in four so severely affected they are unable to leave the house and, frequently, unable to leave their bed. Other symptoms include, pain, mental fogginess, light and noise sensitivities, as well as trouble with memory and sleep. No effective treatment exists.

Jun 24, 2020

In mice, scientists decode how the brain recognizes scent

Posted by in categories: genetics, neuroscience

New research untangles the complex code the brain uses to distinguish between a vast array of smells, offering a scientific explanation for how it separates baby powder from bleach, lemon from orange, or freshly cut grass from freshly brewed coffee.

A single scent can trigger a complex chain of events in what’s known as the olfactory bulb, the brain’s control center for smell. To unravel the intricacies of that process, researchers in the U.S. and Italy turned to a technique known as optogenetics, which uses light to control neurons in the brain. In research on mice, they used light to trick the brain into thinking it smelled a particular scent, then studied brain activity to understand the role different neurons play in a mouse’s ability to recognize that scent. Their findings were published Thursday in Science.

When we encounter a certain smell, it stimulates a specific pattern of activity among tiny spheres known as glomeruli, which are found in the olfactory bulb. The odor plays across these glomeruli like a melody across piano keys: Just as a tune is made distinct by which keys are pressed and at what point in the melody, a scent is made distinct by which glomeruli are activated and in what order.

Jun 24, 2020

Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance

Posted by in categories: biotech/medical, genetics, robotics/AI

Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics.

Jun 24, 2020

Genetic malfunction of brain astrocytes triggers migraine

Posted by in categories: biotech/medical, genetics, neuroscience

“Despite their abundance, astrocytes have been relatively overlooked by neuroscientists,” says Mirko Santello, last author of the study. Yet these cells are extremely important to clear transmitters released by neurons. In their study the researchers were able to show that in familial migraine the astrocytes cannot remove excessive transmitters released by neurons. “The impairment in astrocytic glutamate uptake in the cingulate cortex strongly enhances cortical dendritic excitability and thus enhances firing of the neurons,” Santello says…

Migraine is a complicated disorder that affects part of the nervous system. “Our results provide a clear example of how astrocyte dysfunction produced by a genetic defect affects neuronal activity and sensitivity to head pain triggers,” explains Mirko Santello. The findings help to better understand migraine pathophysiology and suggest that the cingulate cortex may represent a critical hub in the disease. The demonstration of the link between dysfunction of astrocytes in the cingulate cortex and familial migraine could help in devising new migraine treatment strategies.


Neuroscientists of the University of Zurich shed a new light on the mechanisms responsible for familial migraine: They show that a genetic dysfunction in specific brain cells of the cingulate cortex area strongly influences head pain occurrence.

Jun 23, 2020

MIT Automated Tabletop Fast Protein Synthesis Machine May Accelerate Drug Development

Posted by in categories: biotech/medical, engineering, genetics

Automated tabletop machine could accelerate the development of novel drugs to treat cancer and other diseases.

Many proteins are useful as drugs for disorders such as diabetes, cancer, and arthritis. Synthesizing artificial versions of these proteins is a time-consuming process that requires genetically engineering microbes or other cells to produce the desired protein.

MIT chemists have devised a protocol to dramatically reduce the amount of time required to generate synthetic proteins. Their tabletop automated flow synthesis machine can string together hundreds of amino acids, the building blocks of proteins, within hours. The researchers believe their new technology could speed up the manufacturing of on-demand therapies and the development of new drugs, and allow scientists to design artificial proteins by incorporating amino acids that don’t exist in cells.

Jun 23, 2020

We must become a multi-planet species

Posted by in categories: Elon Musk, existential risks, genetics, space travel, sustainability

Former astronaut Jeffrey Hoffman: For the long-term survival of our species, we have to become a multi-planet being.


With our rising planet’s population competing for space and resources, some people are convinced we need to look beyond Earth to help ensure humanity’s survival. As Elon Musk, the entrepreneur behind space tourism company SpaceX told Aeon’s Ross Andersen: “I think there is a strong argument for making life multi-planetary in order to safeguard the existence of humanity in the event that something catastrophic were to happen.”

Continue reading “We must become a multi-planet species” »

Jun 23, 2020

Pioneering research reveals certain human genes relate to gut bacteria

Posted by in categories: biotech/medical, genetics, health, neuroscience

The role genetics and gut bacteria play in human health has long been a fruitful source of scientific enquiry, but new research marks a significant step forward in unraveling this complex relationship. Its findings could transform our understanding and treatment of all manner of common diseases, including obesity, irritable bowel syndrome, and Alzheimer’s disease.

The international study, led by the University of Bristol and published today in Nature Microbiology, found specific changes in DNA — the chains of molecules comprising our genetic make-up — affected both the existence and amount of particular bacteria in the gut.

Lead author Dr David Hughes, Senior Research Associate in Applied Genetic Epidemiology, said: “Our findings represent a significant breakthrough in understanding how genetic variation affects gut bacteria. Moreover, it marks major progress in our ability to know whether changes in our gut bacteria actually cause, or are a consequence of, human disease.”

Jun 23, 2020

Alzheimer’s: New gene may drive earliest brain changes

Posted by in categories: biotech/medical, genetics, neuroscience

A newly discovered Alzheimer’s gene may drive the first appearance of amyloid plaques in the brain, according to a study led by researchers at Columbia University Irving Medical Center.

Some variants of the gene, RBFOX1, appear to increase the concentration of protein fragments that make up these plaques and may contribute to the breakdown of critical connections between neurons, another early sign of the disease.

The finding could lead to new therapies that prevent Alzheimer’s and better ways of identifying people with the greatest risk of developing the disease.