Toggle light / dark theme

Ben Novak, Lead Scientist, Revive & Restore — De-Extinction Biotechnology & Conservation Biology

“De-Extinction” Biotechnology & Conservation Biology — Ben Novak, Lead Scientist Revive & Restore


Ben Novak is Lead Scientist, at Revive & Restore (https://reviverestore.org/), a California-based non-profit that works to bring biotechnology to conservation biology with the mission to enhance biodiversity through the genetic rescue of endangered and extinct animals (https://reviverestore.org/what-we-do/ted-talk/).

Ben collaboratively pioneers new tools for genetic rescue and de-extinction, helps shape the genetic rescue efforts of Revive & Restore, and leads its flagship project, The Great Passenger Pigeon Comeback, working with collaborators and partners to restore the ecology of the Passenger Pigeon to the eastern North American forests. Ben uses his training in ecology and ancient-DNA lab work to contribute, hands-on, to the sequencing of the extinct Passenger Pigeon genome and to study important aspects of its natural history (https://www.youtube.com/watch?v=pK2UlLsHkus&t=1s).

Ben’s mission in leading the Great Passenger Pigeon Comeback is to set the standard for de-extinction protocols and considerations in the lab and field. His 2018 review article, “De-extinction,” in the journal Genes, helped to define this new term. More recently, his treatment, “Building Ethical De-Extinction Programs—Considerations of Animal Welfare in Genetic Rescue” was published in December 2019 in The Routledge Handbook of Animal Ethics: 1st Edition.

Ben’s work at Revive & Restore also includes extensive education and outreach, the co-convening of seminal workshops, and helping to develop the Avian and Black-footed Ferret Genetic Rescue programs included in the Revive & Restore Catalyst Science Fund.

Immersive Worlds: The Metaverse We Design vs. A Computational Multiverse We Inhabit

VR can soon become perceptually indistinguishable from the physical reality, even superior in many practical ways, and any artificially created “imaginary” world with a logically consistent ruleset of physics would be ultrarealistic. Advanced immersive technologies incorporating quantum computing, AI, cybernetics, optogenetics and nanotech would make this a new “livable” reality within the next few decades. Can this new immersive tech help us decipher the nature of our own “b… See more.

RNA Control Switch: Engineers Devise a Way To Selectively Turn On Gene Therapies in Human Cells

Researchers at MIT and Harvard University have designed a way to selectively turn on gene expression in target cells, including human cells. Their technology can detect specific mRNA sequences (represented in the center of the illustration), which triggers production of a specific protein (bottom right). Credit: Jose-Luis Olivares, MIT, with figures from iStockphoto.

“This brings new control circuitry to the emerging field of RNA therapeutics, opening up the next generation of RNA therapeutics that could be designed to only turn on in a cell-specific or tissue-specific way,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering and the senior author of the study.

This highly targeted approach, which is based on a genetic element used by viruses to control gene translation in host cells, could help to avoid some of the side effects of therapies that affect the entire body, the researchers say.

Precision Medicine Data Dive Shows “Water Pill” Could Potentially Be Repurposed To Treat Alzheimer’s

A commonly available oral diuretic pill approved by the U.S. Food and Drug Administration may be a potential candidate for an Alzheimer’s disease treatment for those who are at genetic risk, according to findings published in Nature Aging. The research included analysis showing that those who took bumetanide — a commonly used and potent diuretic — had a significantly lower prevalence of Alzheimer’s disease compared to those not taking the drug. The study, funded by the National Institute on Aging (NIA), part of the National Institutes of Health, advances a precision medicine approach for individuals at greater risk of the disease because of their genetic makeup.

The research team analyzed information in databases of brain tissue samples and FDA-approved drugs, performed mouse and human cell experiments, and explored human population studies to identify bumetanide as a leading drug candidate that may potentially be repurposed to treat Alzheimer’s.

“Though further tests and clinical trials are needed, this research underscores the value of big data-driven tactics combined with more traditional scientific approaches to identify existing FDA-approved drugs as candidates for drug repurposing to treat Alzheimer’s disease,” said NIA Director Richard J. Hodes, M.D.

The search for people who never get COVID

An international team of researchers wants to find people who are genetically resistant to SARS-CoV-2, in the hope of developing new drugs and treatments.


Imagine being born naturally resistant to SARS-CoV-2, and never having to worry about contracting COVID-19 or spreading the virus. If you have this superpower, researchers want to meet you, to enrol you in their study.

As described in a paper in Nature Immunology1 this month, an international team of scientists has launched a global hunt for people who are genetically resistant to infection with the pandemic virus. The team hopes that identifying the genes protecting these individuals could lead to the development of virus-blocking drugs that not only protect people from COVID-19, but also prevent them from passing on the infection.

“It’s a terrific idea,” says Mary Carrington, an immunogeneticist at the Frederick National Laboratory for Cancer Research in Bethesda, Maryland. “Really, a wise thing to do.”

Prof Goya & Dr Katcher Lifespan Experiment Update Oct 2021 | Modern Healthspan

The non-E5 made rats healthier with a small increase in lifespan. The E5 part 2 is still ongoing with rats at 31 months that generally at most live 36 months.


In this video we give a brief update on the parallel experiments being conducted by Dr Katcher and Professor Goya. In these studies they are injecting E5 and young blood plasma into rats in repeatedly to see if the maximum lifespan can be extended.

The newsletter is here.
https://www.ntzplural.com/newsletter.

Papers mentioned in this video.
The original paper on BioXriv.
Reversing age: dual species measurement of epigenetic age with a single clock.
https://www.biorxiv.org/content/10.1101/2020.05.07.082917v1
********************************************
Health claims Disclosure: Information provided on this video is not a substitute for direct, individual medical treatment or advice. Please consult with your doctor first. Products or services mentioned in this video are not a recommendation.

Disclosure: Some of the links provided are affiliate links. Although we may receive a small commission from the affiliate, the cost of the product for you will always be the same, or often discounted. Thank you for supporting our channel.

FlexSail: Solar Sails and Tech Revolutions — Kent Nebergall — 2021 Mars Society Virtual Convention

Track code: TD-3

Abstract:
Solar Sails are at the same stage of engineering development as electric motors were in the 1830’s. Each attribute of solar flux has been examined in isolation, such as photon, proton, plasma, and electrodynamic systems. This talk recommends designing a simple baseline system that converges multiple propulsion methods into optimized systems, as is currently done with electric motors. Many convergences can come from this solution space. Once a baseline design is created, AI genetic algorithms can “flight test” and refine the designs in simulation to adjust proportions and geometry. Once a base design is refined, a second AI evolution pass would design fleet systems that flock like birds to optimize performance. These could fly as a protective shield around Mars crewed fleets, provide space based solar power, deploy rapid reaction probes for interstellar comets, and be used in NEO asteroid mining. In the long term, fleets of solar energy management vehicles can provide orbital Carrigan event protection and Martian solar wind protection for terraforming. This talk is also a case study in how technology revolutions happen, and how to accelerate the creation and democratization of technical solutions.

From the 24th Annual International Mars Society Convention, held as a Virtual Convention worldwide on the Internet from October 14–17, 2021. The four-day International Mars Society Convention, held every year since 1,998 brings together leading scientists, engineers, aerospace industry representatives, government policymakers and journalists to talk about the latest scientific discoveries, technological advances and political-economic developments that could help pave the way for a human mission to the planet Mars.

Conference Papers and some presentations will be available on www.MarsPapers.org.

For more information on the Mars Society, visit our website at www.MarsSociety.org.

#MarsSociety #MarsSocCon2021

Clues to Immortality From the Fruit Fly Genome

Circa 2018


The secrets to immortality may lie in an unexpected place — fruit fly stem cells. Researchers led by Howard Hughes Medical Institute (HHMI) Investigator Yukiko Yamashita have found that some stem cells have a genetic trick to remain young forever across generations. While some areas of the fruit fly genome get shorter as they age, some reproductive cells are able to fix that shortening. Once observed only in yeast, this work, reported in eLife, has revealed more about aging, and how some cells can avoid it.

This work focused on critical genes in ribosomal DNA, rDNA. Ribosomes are cellular organelles that act as protein factories. That rDNA is repeated in several areas of the genome because many ribosomes are needed to make all of the proteins the body needs. Five chromosomes each have spots with hundreds of copies of rDNA. However, that type of redundant sequence can be difficult for cells to replicate accurately every time cell division happens.

AI-based technology rapidly identifies genetic causes of rare disorders with high accuracy

An artificial intelligence (AI)-based technology rapidly diagnoses rare disorders in critically ill children with high accuracy, according to a report by scientists from University of Utah Health and Fabric Genomics, collaborators on a study led by Rady Children’s Hospital in San Diego. The benchmark finding, published in Genomic Medicine, foreshadows the next phase of medicine, where technology helps clinicians quickly determine the root cause of disease so they can give patients the right treatment sooner.

“This study is an exciting milestone demonstrating how rapid insights from AI-powered decision support technologies have the potential to significantly improve patient care,” says Mark Yandell, Ph.D., co-corresponding author on the paper. Yandell is a professor of human genetics and Edna Benning Presidential Endowed Chair at U of U Health, and a founding scientific advisor to Fabric.

Worldwide, about seven million infants are born with serious genetic disorders each year. For these children, life usually begins in intensive care. A handful of NICUs in the U.S., including at U of U Health, are now searching for genetic causes of disease by reading, or sequencing, the three billion DNA letters that make up the human genome. While it takes hours to sequence the whole genome, it can take days or weeks of computational and manual analysis to diagnose the illness.

/* */