Toggle light / dark theme

Gene Therapy Can Restore Hearing in Adults, First-of-Its-Kind Trial Shows

Up to three in every 1,000 newborns has hearing loss in one or both ears. While cochlear implants offer remarkable hope for these children, it requires invasive surgery. These implants also cannot fully replicate the nuance of natural hearing.

But recent research my colleagues and I conducted has shown that a form of gene therapy can successfully restore hearing in toddlers and young adults born with congenital deafness.

Our research focused specifically on toddlers and young adults born with OTOF-related deafness. This condition is caused by mutations in the OTOF gene that produces the otoferlin protein –a protein critical for hearing.

Incurable blood cancer tied to gene mutation in new lab model

Researchers working on an incurable blood cancer can now use a new lab model that could make testing potential new treatments and diagnostics easier and quicker, new research has found.

In a paper published in Nature Communications, a team of researchers led by the University of Birmingham has studied from patients with a blood cancer called myelodysplastic syndrome disease (MDS). This disease often develops into a highly aggressive form of acute myeloid leukemia (AML).

Working with this new model has led to confirmation that a mutation in the gene CEBPA causes progression from MDS to AML.

Unlocking the mystery behind Barrett’s esophagus

A team led by researchers at Baylor College of Medicine and Washington University School of Medicine has shed light on the process that drives Barrett’s esophagus formation. This condition affects the lining of the esophagus—the tube that carries food from the mouth to the stomach—and increases the risk of developing esophageal adenocarcinoma, a serious and often deadly cancer.

The study, published in the Journal of Clinical Investigation, reveals that two important genes involved in guiding and maintaining the identity of the esophagus and intestine, SOX2 and CDX2, are altered in Barrett’s esophagus. The findings not only deepen our understanding of how the disease develops but also open the door to new ways of identifying people at risk and potentially preventing the condition from progressing to cancer.

“Esophageal adenocarcinoma is one of the fastest growing solid cancers. It is difficult to treat, and there are no effective screening techniques available,” said first and co-corresponding author Dr. Ramon Jin, assistant professor in the John T. Milliken Department of Medicine at Washington University.

First Step Towards an Artificial Human Genome Now Underway

As if sequencing a full human genome wasn’t tricky enough, scientists are now attempting to reconstruct our species’ genetic material from the ground up.

It’s an ambitious and controversial project called the Synthetic Human Genome (SynHG) project, and work has already begun on a proof-of-concept.

The goal of this crucial first step is to use the human genome blueprint to write the genetic code for a single, enormously long strand of DNA in just one of our chromosomes – making up approximately 2 percent of our total genome.

Research teases apart competing transcription organization models

Scientists at St. Jude Children’s Research Hospital have reconciled two closely related but contentious mechanisms underlying transcription, the process of converting genetic information in DNA into messenger RNA. Phase separation has been proposed as a driving force in transcription due to its ability to selectively concentrate proteins and DNA in discrete droplets.

DNA as a perfect quantum computer based on the quantum physics principles

I believe that dna will be able to answer just about all our genetic coding questions so much that it will lead to even better breakthroughs in the future and use hardly any energy. I believe also that the master algorithm can eventually be derived from DNA as dna seems already a perfect master algorithm for human beings where human beings are the key to all future progress. I say this as quantum computing is still not stable but we already know that dna computers seem already a masterpiece already especially even organoids of the human brain. Really it becomes really quite simple as even the quantum realm is unstable but dna computers that are quantum would stabilize this currently unstable realm.


Riera Aroche, R., Ortiz García, Y.M., Martínez Arellano, M.A. et al. DNA as a perfect quantum computer based on the quantum physics principles. Sci Rep 14, 11,636 (2024). https://doi.org/10.1038/s41598-024-62539-5

Download citation.

Researchers discover link between key protein and brain synapse development

Scientists have uncovered how a protein helps build and maintain vital brain connections, providing insights into the neurological problems experienced by people with a rare form of muscular dystrophy known as dystroglycanopathy.

The research conducted at Oregon Health & Science University and published in Communications Biology reveals that the protein Dystroglycan plays a critical role in forming and maintaining connections between nerve cells in the cerebellum—the part of the brain responsible for movement coordination and motor learning.

In people with dystroglycanopathy, in the protein affect not only muscles but also the brain. The condition is a type of congenital muscular dystrophy, a group of inherited disorders that appear at birth or in early infancy.

Blood stem cell mutations linked to lower risk of late-onset Alzheimer’s disease

A study published in Cell Stem Cell reveals that some mutations in blood stem cells might help protect against late-onset Alzheimer’s disease.

A team led by researchers at Baylor College of Medicine discovered that both a mouse model and people carrying blood stem cells with mutations in the gene TET2, but not in the gene DNMT3A, had a lower risk of developing Alzheimer’s disease. Their study proposes a mechanism that can protect against the disease and opens new avenues for potential strategies to control the emergence and progression of this devastating condition.

“Our lab has long been studying blood stem cells, also called ,” said lead author Dr. Katherine King, professor of pediatrics— and a member of the Center for Cell and Gene Therapy and the Dan L Duncan Comprehensive Cancer Center at Baylor. She is also part of Texas Children’s Hospital.

/* */