Toggle light / dark theme

Genetically engineered virus acts as ‘smart sponge’ to extract rare earth elements from water

Today’s high-tech electronics and green energy technologies would not function without rare earth elements (REEs). These 17 metals possess unique properties essential to creating items like the phosphors that illuminate our mobile phone displays and the powerful magnets used in electric vehicles and wind turbines. But extracting these substances from raw materials is a dirty process that relies on toxic chemicals and leaves behind polluted waste.

Now, a team of UC Berkeley-led researchers may have solved this problem—thanks to a tiny virus.

As reported in Nano Letters, the researchers genetically engineered a to act like a “smart sponge” that grabs from water, and, with a gentle change in temperature and acidity (pH), releases them for collection. Their unusual, groundbreaking approach could lead to a “clean” biological alternative to traditional extraction methods for REEs and other critical elements.

Scientists Use “Supercentenarian Longevity Gene” to Slow Rapid Aging Disease

Researchers discovered that a longevity gene from centenarians can reverse heart damage linked to progeria, suggesting a new approach to treating rapid and age-related heart aging.

A major advancement has been made in understanding a rare genetic disorder that causes children to age prematurely. Scientists from the University of Bristol and IRCCS MultiMedica identified “longevity genes” found in people who live beyond 100 years, which appear to protect the heart and blood vessels during aging. Their study suggests these genes could potentially reverse the damage caused by this fatal condition.

Understanding progeria and its effects.

Scientists Map the Brain’s Construction From Stem Cells to Early Adolescence

This herculean effort could help scientists unravel the causes of neurodevelopmental disorders. In one study, led by Arnold Kriegstein at the University of California, San Francisco, scientists found brain stem cells that are potentially co-opted to form a deadly brain cancer in adulthood. Other studies shed light on imbalances between excitatory and inhibitory neurons—these ramp up or tone down brain activity, respectively—which could contribute to autism and schizophrenia.

“Many brain diseases begin during different stages of development, but until now we haven’t had a comprehensive roadmap for simply understanding healthy brain development,” said Kriegstein in a press release. “Our map highlights the genetic programs behind the growth of the human brain that go awry during specific forms of brain dysfunction.”

Over a century ago, the first neuroscientists used brain cell shapes to categorize their identities. BICAN collaborators have a much larger arsenal of tools to map the brain’s cells.

Immune reactions found behind human rejection of transplanted pig kidneys

Researchers have uncovered and then overcome an obstacle that has led to the failure of pioneering efforts in xenotransplantation, in which an animal kidney is transplanted into a human.

More than 800,000 Americans have late-stage kidney disease, yet only 3% receive a transplant each year, according to the U.S. Centers for Disease Control and Prevention. To boost the supply of available organs, experts are exploring the use of genetically modified pig kidneys.

The genetic changes are meant to keep the from recognizing the animal organ as foreign and attacking it to cause rejection. However, recipients’ immune reactions can still lead to organ damage and failure after the surgery.

Scientists identify a crucial brain feature connecting genetics to intelligence

A team of neuroscientists has uncovered evidence that genetic influences on intelligence may operate through the density of brain wiring, highlighting a potential biological bridge between inherited DNA differences and the brain structures that support reasoning and problem-solving.

Alzheimer’s risk calculator could spot danger years before symptoms begin

Mayo Clinic researchers have developed a new tool that can estimate a person’s risk of developing memory and thinking problems associated with Alzheimer’s disease years before symptoms appear.

The research, published in The Lancet Neurology, builds on decades of data from the Mayo Clinic Study of Aging—one of the world’s most comprehensive population-based studies of .

The study found that women have a higher than men of developing and (MCI), a transitional stage between healthy aging and dementia that often affects quality of life but still allows people to live independently. Men and women with the common genetic variant, APOE ε4, also have a higher lifetime risk.

Why Did “Magic Mushrooms” Evolve To Be Hallucinogenic — What’s In It For The Mushrooms?

Given its versatile ability to help with these problems (research is, of course, ongoing), and the hallucinogenic properties of psilocybin, it’s no wonder they’ve earned the nickname “magic mushrooms”. But it may have crossed your mind at some point: what is in it for the mushrooms themselves? In short, why did these mushrooms evolve to be psychedelic?

The trait must be useful in some way to the fungi. In fact, it may be so useful that it has evolved this property several times.

“Nature has actually invented the same active compound twice,” Tim Schäfer, lead author of a recent genetic study which found this surprising result, said in a statement.

Oxygen Deprivation Alters Gene Expression, Raising Illness Risk

Oxygen is vital to the body. When levels of oxygen in the blood get too low, serious problems can arise. This can happen as people recover from some disorders that can drive oxygen levels down, such as repeated infections or severe lung disease. New research has shown that low blood oxygen levels can alter various aspects of DNA in important immune cells, and this can hamper the body’s ability to fight dangerous infections. The findings have been reported in Nature Immunology.

/* */