Toggle light / dark theme

Recent advancements in in-vitro gametogenesis (IVG) suggest that lab-grown eggs and sperm could become viable within the next decade. This technology holds the promise of revolutionizing fertility treatments, particularly for individuals facing infertility and same-sex couples desiring biological children. However, it also raises significant ethical and medical considerations that must be carefully addressed.

The Human Fertilisation and Embryology Authority (HFEA), the UK’s fertility regulator, has reported that the development of lab-grown gametes, known as in-vitro gametogenesis (IVG), may become a practical option within the next decade. This technology involves creating eggs and sperm from reprogrammed skin or stem cells, potentially transforming fertility treatments by removing age-related barriers and enabling same-sex couples to have biological children.

IVG represents a significant advancement in reproductive science. By generating gametes in the laboratory, scientists can overcome challenges associated with traditional fertility treatments. This approach could provide new avenues for individuals with infertility issues and offer same-sex couples the opportunity to have children genetically related to both partners.

Researchers at the University of Cologne and University Hospital Cologne have determined that the novel mRNA-based COVID-19 vaccines not only induce acquired immune responses such as antibody production, but also cause persistent epigenetic changes in innate immune cells.

The study, “Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages,” led by Professor Dr. Jan Rybniker, who heads the Division of Infectious Diseases at University Hospital Cologne and is a principal investigator at the Center for Molecular Medicine Cologne (CMMC), and Dr. Robert Hänsel-Hertsch, principal investigator at the CMMC, was published in Molecular Systems Biology.

The immune system comprises two immunity strategies: the innate and the acquired (adaptive) immune system. The innate immune system provides general protection from pathogens and must react quickly. The adaptive immune system adapts to new pathogens and is highly specific in its response. Both systems work closely together.

Researchers at Children’s Hospital of Philadelphia (CHOP) developed a longitudinal atlas of neuroblastoma, a common and potentially deadly childhood cancer, to gain a deeper understanding into precise molecular mechanisms underlying why and how certain treatments eventually become ineffective.

The findings, which offer insights that could potentially lead to new personalized medicine approaches in treatment, were published today in the journal Nature Genetics.

Despite significant advances in the standard of care, the 5-year survival rate of high-risk neuroblastoma after diagnosis remains less than 50%. Neuroblastoma cells within the same tumor can vary greatly, which creates challenges in treatment efficacy. Until now, the scientific community lacked understanding of how the tumor microenvironment changes during treatment.

A new multicenter study by researchers at the Icahn School of Medicine at Mount Sinai, in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and colleagues around the world, has discovered that the genes we are born with—known as germline genetic variants—play a powerful, underappreciated role in how cancer develops and behaves.

Published in the April 14 online issue of Cell, the study, “Precision Proteogenomics Reveals Pan-Cancer Impact of Germline Variants,” is the first to detail how millions of inherited influence the activity of thousands of proteins within tumors.

Drawing on data from more than 1,000 patients across 10 different cancer types, the research illustrates how a person’s unique genetic makeup can shape the biology of their cancer.

17K likes, — vaibhavsisinty on March 27, 2025: “Your Future Kids Might Be Genetically Engineered🤯… [genetic engineering, CRISPR, designer babies, IVF, in vitro gametogenesis, gene editing, human evolution, bioethics, futuristic science, AI in healthcare, medical advancements, artificial reproduction, skin cell gametes, future tech, DNA modification, biotechnology]”

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Coronary Artery Disease (CAD) is the most common cardiovascular disease worldwide, threatening human health, quality of life and longevity. Aging is a dominant risk factor for CAD. This study aims to investigate the potential mechanisms of aging-related genes and CAD, and to make molecular drug predictions that will contribute to the diagnosis and treatment.

We downloaded the gene expression profile of circulating leukocytes in CAD patients (GSE12288) from Gene Expression Omnibus database, obtained differentially expressed aging genes through “limma” package and GenaCards database, and tested their biological functions. Further screening of aging related characteristic genes (ARCGs) using least absolute shrinkage and selection operator and random forest, generating nomogram charts and ROC curves for evaluating diagnostic efficacy. Immune cells were estimated by ssGSEA, and then combine ARCGs with immune cells and clinical indicators based on Pearson correlation analysis. Unsupervised cluster analysis was used to construct molecular clusters based on ARCGs and to assess functional characteristics between clusters. The DSigDB database was employed to explore the potential targeted drugs of ARCGs, and the molecular docking was carried out through Autodock Vina.