Toggle light / dark theme

The oral and skin care brand has already undertaken two other experiments on the space station.

Colgate-Palmolive Company and NASA have entered into a partnership to explore innovative solutions to advance oral health, personal care and skin health for astronauts and even populations on earth, according to a press release by the self-care company published on Wednesday.

The deal will see former astronaut Dr. Cady Coleman join the team as an advisor for the experiments conducted.

Called the Space Act Agreement (SAA), the new project will see Colgate and NASA collaborate to test Colgate technologies, across oral health, skin health, and personal care product categories, that could help maintain or even improve the health and wellbeing of all space travelers in low orbit, either before, during, or after long-duration missions. The agreement will also see the International Space Station (ISS) used as an experimental testing ground.

An analysis of 22 large-scale gene expression datasets pointed to exercise and activity in general as the most effective theoretical treatment for reversing gene expressions typical of Alzheimer’s disease. Fluoxetine, a well-known antidepressant, also showed effect, particularly when combined with exercise. Curcumin showed positive effects as well. The study was published in Scientific Reports.

Alzheimer’s disease is a complex neurodegenerative disorder that affects multiple brain regions. It is the most common disease that causes dementia and is very difficult to treat. In the course of the disease, abnormal collections of proteins called tau accumulate inside neurons.

Another type of protein clumps together to form so-called amyloid plaques that collect between neurons and disrupt cell functions. These and other changes harm the functioning of the brain across different regions and lead to dysfunction and death of brain cells.

Cambridge scientists have created a comprehensive tool for predicting an individual’s risk of developing prostate cancer, which they say could help ensure that those men at greatest risk will receive the appropriate testing while reducing unnecessary—and potentially invasive—testing for those at very low risk.

CanRisk-Prostate, developed by researchers at the University of Cambridge and The Institute of Cancer Research, London, will be incorporated into the group’s CanRisk web tool, which has now recorded almost 1.2 million risk predictions. The free tool is already used by health care professionals worldwide to help predict the risk of developing breast and .

Prostate cancer is the most common type of cancer in men. According to Cancer Research UK, more than 52,000 men are diagnosed with the disease each year and there are more than 12,000 deaths. Over three-quarters (78%) of men diagnosed with survive for over ten years, but this proportion has barely changed over the past decade in the U.K.

The experiment is a collaboration between the University of Cambridge and Université Libre de Bruxelles – partner institutions of the European Commission’s Graphene Flagship – along with the Mohammed bin Rashid Space Centre (MBRSC) in the United Arab Emirates, York University in Canada, and the European Space Agency (ESA).

Regolith is composed of extremely sharp, tiny and sticky grains and, since the Apollo missions, it has been one of the biggest challenges lunar missions have had to overcome. Regolith can cause mechanical and electrostatic damage to equipment and is therefore also hazardous for astronauts. It clogs spacesuits’ joints, obscures visors, erodes spacesuits and protective layers, and is a potential health hazard.

Cambridge researchers have produced special graphene composites that are meant to reduce regolith adhesion. The graphene samples will be monitored via an optical camera, which will record footage throughout the mission. Researchers from Université Libre de Bruxelles (ULB) will gather information during the mission and suggest adjustments to the path and orientation of the rover. Data and images obtained will be used to study the effects of the moon environment and the regolith abrasive stresses on the samples.

Earth has been hit by an intense, unusual blast of light that could change our understanding of the universe, scientists have said.

Late last year, scientists spotted a 50-second-long blast of energy coming towards Earth, known as a gamma-ray burst or GRB, which are the most powerful explosions in the universe. Immediately, researchers started looking for the afterglow that such blasts leave behind, with that visible light being useful to find where the blast has come from.

http://www.iBiology.org.

For millennia, humans have been harnessing #microbes to produce everything from breads, to cheeses, to alcohol. Now these tiny organisms have produced another powerful revolution — the gene editing tool CRISPR. Rodolphe Barrangou, Ph.D., was working at the food company Danisco, where he was trying to produce yogurt lines resistant to contamination. In a series of groundbreaking experiments, he helped uncover what CRISPR was, how it worked, and why it could be so transformative.

Speaker Biography:
Rodolphe Barrangou, Ph.D., studies beneficial microbes, focusing on the occurrence and diversity of lactic acid bacteria in fermented foods and as probiotics. Using functional genomics, he has focused on uncovering the genetic basis for health-promoting traits, including the ability to uptake and catabolize non-digestible carbohydrates. He spent 9 years at Danisco-DuPont, characterizing probiotics and starter cultures, and established the functional role of CRISPR-Cas as adaptive immune systems in bacteria. At NC State, he continues to study the molecular basis for their mechanism of action, as well as developing and applying CRISPR-based technologies for genotyping, building immunity and genome editing.

Producers: Sarah Goodwin, Rebecca Ellsworth.
Cinematographer: Derek Reich.
Editor: Rebecca Ellsworth\
Graphics: Chris George, Maggie Hubbard.
Assistant Camera: Gray McClamrock.
Drone aerials: Travis Jack.
Supervising Editor: Regina Sobel.
Field Producer: Meredith DeSalazar.
Interview by: Adam Bolt.
Associate Producer: Shelley Elizabeth Carter.
Executive Producers: Shannon Behrman, Sarah Goodwin, Elliot Kirschner.

Except where otherwise noted, this work is licensed under.
http://creativecommons.org/licenses/by-nc-nd/4.0/
© 2007–2022 Science Communication Lab™. All rights reserved.

#biology #research

Good Morning, 2033 — A Sci-Fi Short Film.

What will your average morning look like in 2033? And who hacked us?

This scif-fi short film explores a number of near-future futurist predictions for the 2030s.

Sleep with a brain sensor sleep mask that determines when to wake you. Wake up with gentle stimulation. Drink enhanced water with nutrients, vitamins, and supplements you need. Slide on your smart glasses that you wear all day. Do yoga and stretching on a smart scale that senses you, and get tips from a virtual trainer. Help yourself wake up with a 99CRI, 500,000 lumen light. Go for a walk and your glasses scan your brain as you walk. Live neurofeedback helps you meditate. Your kitchen uses biodata to figure out the ideal health meal, and a kitchen robot makes it for you. You work in VR, AR, MR, XR, reality in the metaverse. You communicate with the world through your AI assistant and AI avatar. You enter the high tech bathroom that uses UV lights and robotics to clean your body for you. Ubers come in the form of flying cars, EVTOL aircraft, that move at 300km/h. Cities become a single color as every inch of roads and buildings become covered in photovoltaic materials.

Creator: Cayden Pierce — https://caydenpierce.com.

How did you make this sci-fi short film?

While studying how bio-inspired materials might inform the design of next-generation computers, scientists at the Department of Energy’s Oak Ridge National Laboratory achieved a first-of-its-kind result that could have big implications for both edge computing and human health.

Results published in Proceedings of the National Academy of Sciences show that an artificial is capable of long-term potentiation, or LTP, a hallmark of biological learning and . This is the first evidence that a cell membrane alone—without proteins or other biomolecules embedded within it—is capable of LTP that persists for many hours. It is also the first identified nanoscale structure in which memory can be encoded.

“When facilities were shut down as a result of COVID, this led us to pivot away from our usual membrane research,” said John Katsaras, a biophysicist in ORNL’s Neutron Sciences Directorate specializing in neutron scattering and the study of biological membranes at ORNL.

This post is also available in: he עברית (Hebrew)

How soon will we be seeing robots walking about the street? How soon will robots join medical staff in hospitals and aid real people in life or death situations? How soon will robots replace health staff? The World Health Organization (WHO) estimates that we will see a global shortfall of 12 million health workers by 2025.

From lifting patients and delivering lab samples, to cleaning and providing companionship, care robots can help with a range of tasks across a hospital or care setting. With nurses spending up to a third of their shift on menial tasks such as collecting equipment, the expectation is that care robots will be able to take ownership of these more mundane jobs, letting health staff focus on more important tasks.

Two categories of nanofabrication technologies are known as top-down and bottom-up approaches [5]. For the former, nanosized materials are prepared through the rupture of bulk materials to fine particles, and such a process is usually conducted by diverse physical and mechanical techniques like lithography, laser ablation, sputtering, ball milling and arc-discharging [6, 7]. These techniques themselves are simple, and nanosized materials can be produced quickly after relatively short technological process, but expensive specialized equipment and high energy consumption are usually inevitable. Meanwhile, a variety of efficient chemical bottom-up methods, where atoms assemble into nuclei and then form nanoparticles, have been intensively studied to synthesize and modulate nanomaterials with specific shape and size [8].

Indeed, chemical methodologies, including but not limited to, aqueous reaction using chemical reducing agents (e.g. hydrazine hydrate and sodium borohydride), electrochemical deposition, hydrothermal/solvothermal synthesis, sol–gel processing, chemical liquid/vapor deposition, have been developed up to now [5, 6]. These approaches can not only produce diverse nanomaterials with fairly high yields, but also endow fine controllability in tailoring nanostructures and properties of the products. Nevertheless, they have been encountering some serious challenges of harsh reaction conditions (e.g. pH and temperature), potential risks in human health and environment, and low cost-effectiveness. Moreover, there are biosafety concerns on products synthesized chemically using hazardous reagents, which restricts their applications in many areas, particularly in medicines and pharmaceuticals [9].

Impressively, biological methodology is becoming a favourite in nanomaterial synthesis nowadays to address challenges in chemical synthesis. Compared to chemical routes, biosynthesis using natural and biological materials as reducing, stabilizing and capping agents are simple, energy-and cost-effective, mild and environment-friendly, which is termed as “Green Chemistry” [2, 6]. More significantly, the biologically synthesized nanomaterials have much better competitiveness in biocompatibility, compared to those chemically derived counterparts. On the one hand, the biogenic nanomaterials are free from toxic contamination of by-products that are usually involved in chemical synthesis process; on the other hand, the biosynthesis do not need additional stabilizing agents because either the used organisms themselves or their constituents can act as capping and stabilizing agents and the attached biological components in turn form biocompatible envelopes on the resultant nanomaterials, leading to actively interact with biological systems [2]. As one of the most abundant biological resources, some microorganisms have adapted to habitat contaminated with toxic metals, and thus evolved powerful tactics for remediating polluted environment while recycling metal resources [7, 10], and some review articles on the biosynthesis of MNPs using diverse microorganisms including bacteria, yeast, fungi, alga, etc. and their applications have been published in recent years [1, 2, 6, 7, 10].