Toggle light / dark theme

Stress – whether it’s job strain, emotional wrangles or health worries – is something we all experience. However, a new study from USC shows stress accelerates aging of the immune system, potentially increasing a person’s risk of cancer, cardiovascular disease and illness from infections such as COVID-19 [1].

Longevity. Technology: The new research, which has been published in the Proceedings of the National Academy of Sciences, could help explain disparities in age-related health, including the unequal toll of the pandemic, and identify possible points for intervention.

“As the world’s population of older adults increases, understanding disparities in age-related health is essential. Age-related changes in the immune system play a critical role in declining health,” said lead study author Eric Klopack, a postdoctoral scholar in the USC Leonard Davis School of Gerontology. “This study helps clarify mechanisms involved in accelerated immune aging [2].”

Monitoring PHAs is a huge responsibility that requires a worldwide effort, including tracking, alerts, and disaster preparedness. Last year, over 100 participants from 18 countries (including NASA scientists and the NEOWISE mission) conducted an international exercise that simulated an encounter with an asteroid that made a close flyby to Earth. As NASA revealed in a recently-released study, the exercise was a complete success. The lessons learned could help avert real impacts in the near future or significantly limit the devastation one could cause.

The study, which appeared in the May 31 issue of The Planetary Science Journal (titled “Apophis Planetary Defense Campaign”), was conducted by the Planetary Defense Exercise Working Group and led by Vishnu Reddy — an Associate Professor at the University of Arizona’s Lunar and Planetary Laboratory (LPI). The working group is made up of more than 100 participants from 18 countries and includes facilities like NASA’s Planetary Defense Coordination Office (PDCO), the ESA NEO Coordination Centre, the Russian Academy of Sciences, the Korea Astronomy and Space Science Institute (KASI), and many universities and research institutes worldwide.

As Reddy and his colleagues describe in the paper, the planetary defense exercise was the culmination of work that began in 2017, which was designed to test the operational readiness of our global planetary defense capabilities. The exercise was carried out with the support of NASA’s PDCO, the Minor Planet Center (MPC) — the internationally-recognized authority for monitoring the position and motion of small celestial bodies — and the International Asteroid Warning Network (IAWN). The exercise was named the Apophis Campaign since it coincided with the close approach of the NEO (99942) Apophis, which flew past Earth from December 2020 to March 2021.

A new tool can quickly and reliably identify the presence of Ebola virus in blood samples, according to a study by researchers at Washington University School of Medicine in St. Louis and colleagues at other institutions.

The technology, which uses so-called optical microring resonators, potentially could be developed into a rapid diagnostic test for the deadly Ebola virus disease, which kills up to 89% of infected people. Since it was discovered in 1976, Ebola virus has caused dozens of outbreaks, mostly in central and west Africa. Most notable was an outbreak that began in 2014 and killed more than 11,000 people in Guinea, Sierra Leone and Liberia; in the U.S., the virus caused 11 cases and two deaths. A rapid, early diagnostic could help public health workers track the virus’ spread and implement strategies to limit outbreaks.

Michael LorreyGates is, famously, the guy who said, “Why would anyone ever need more than 640kb of memory?” and “The internet is a fad.”

2 Replies.

Paul Battista shared a link. Lifeboat Foundation.


The benefits of exercise in a pill? Science is now closer to that goal.

Researchers have identified a molecule in the blood that is produced during exercise and can effectively reduce food intake and obesity in mice. The discovery improves our understanding of the physiological processes that underlie the interplay between exercise and hunger. Scientists from Baylor College of Medicine, Stanford School of Medicine and collaborating institutions reported the findings on June 15 in the journal Nature.

“Regular exercise has been proven to help weight loss, regulate appetite, and improve the metabolic profile, especially for people who are overweight and obese,” said co-corresponding author Dr. Yong Xu, professor of pediatrics – nutrition and molecular and cellular biology at Baylor. “If we can understand the mechanism by which exercise triggers these benefits, then we are closer to helping many people improve their health.”

STANFORD, Calif. — An “anti-hunger” pill could be on the horizon, according to a new study. Researchers from Stanford Medicine and Baylor University have identified a molecule that keeps people from getting hungry after exercising.

In experiments, the compound dramatically reduced food intake and obesity in mice. Study authors hope to turn it into a medication that may even replace the need to go to the gym.

Researchers at Imperial College London have developed a new dual drone that can both fly through air and land on water to collect samples and monitor water quality. The researchers developed a drone to make monitoring drones faster and more versatile in aquatic environments.

The ‘dual robot’ drone, tested at Empa and the aquatic research institute Eawag in Switzerland, has successfully measured water in lakes for signs of microorganisms and algal blooms, which can pose hazards to human health, and could in the future be used to monitor climate clues like temperature changes in Arctic seas.

The unique design, called Multi-Environment Dual robot for Underwater Sample Acquisition (MEDUSA), could also facilitate monitoring and maintenance of offshore infrastructure such as subsea pipelines and floating wind turbines.

The application of mechanic forces to the cell nucleus affects the transport of proteins through the nuclear membrane, an action that controls cellular processes and could play a key role in several diseases such as cancer. These findings draw a new scenario for understanding how the mechanic forces drive the progression of cancer and open the doors to the design of potential innovative techniques—both diagnostic and therapeutic. This is the conclusion of a study published in the journal Nature Cell Biology led by lecturer Pere Roca-Cusachs, from the Faculty of Medicine and Health Sciences of the University of Barcelona, the Institute of Nanoscience and Nanotechnology of the UB (IN2UB) and the Institute for Bioengineering of Catalonia (IBEC).

The cells in the body receive mechanical stimuli from their environment and respond accordingly regarding decisions on how and when to grow, move and differentiate. The process is known as mechanotransduction and it is critically important for the cell function and for human health.

The study reveals that the direct application of force to the can affect the spatial organization of the DNA and the activity of nuclear proteins, among other functions. When invade the organs and metastasis appears, these create physical forces that are transmitted to the .