Toggle light / dark theme

As we sit here in 2020, in the middle of a major viral pandemic, we can’t forget the fact that a century after the first antibiotics were created, drug resistant bacterial infections have become a major threat around the globe, exactly at the same time that the antibiotic pipelines of pharma companies have either dried up, or they have gotten out of the business.

In the U.S. alone, Centers For Disease Control (CDC) estimates that antibiotic resistance causes more than 2 million infections, several million hospital stay days, and over 35, 000 deaths per year. Worldwide, such infections cause 750, 000 deaths every year. And a recent United Nations (UN) report concluded that by 2050, “super bugs” could kill 10 million people globally every year, if no action is taken to combat the problem.

A solution to this emerging threat lies in the area of bacteriophage therapy (or “phage” for short), which is a type of virus that infects, replicates within, and are very good at killing bacteria.

Interestingly, phages have been used for over 90 years as an alternative to antibiotics in the former Soviet Union and Central Europe as well as in France. They are seen as a possible therapy against multi-drug-resistant strains of many bacteria and have been shown to interfere not just with bacteria life cycles, but also with biofilm production and quorum sensing involved bacterial colonization processes.

Dr. Robert Schooley, MD, is a Professor of Medicine, in the Division of Infectious Diseases and Global Public Health, at UC San Diego, the Co-Director of their Center for Innovative Phage Applications and Therapeutics (IPATH), as well as Interim Faculty Director, Global Education and Senior Director, International Initiatives.

Dr. Schooley is a graduate of the Johns Hopkins University School of Medicine. He completed an internal medicine residency at the Johns Hopkins Hospital and infectious disease fellowships at the National Institute of Allergy and Infectious Diseases and the Massachusetts General Hospital.

Emerging and reemerging infections present an ever-increasing challenge to global health. Here, we report a nanoparticle-enabled smartphone (NES) system for rapid and sensitive virus detection. The virus is captured on a microchip and labeled with specifically designed platinum nanoprobes to induce gas bubble formation in the presence of hydrogen peroxide. The formed bubbles are controlled to make distinct visual patterns, allowing simple and sensitive virus detection using a convolutional neural network (CNN)-enabled smartphone system and without using any optical hardware smartphone attachment. We evaluated the developed CNN-NES for testing viruses such as hepatitis B virus (HBV), HCV, and Zika virus (ZIKV). The CNN-NES was tested with 134 ZIKV-and HBV-spiked and ZIKV-and HCV-infected patient plasma/serum samples. The sensitivity of the system in qualitatively detecting viral-infected samples with a clinically relevant virus concentration threshold of 250 copies/ml was 98.97% with a confidence interval of 94.39 to 99.97%.


See allHide authors and affiliations.

Smartphone systems can also benefit from the recent unprecedented advancements in nanotechnology to develop diagnostic approaches. Catalysis can be considered as one of the popular applications of nanoparticles because of their large surface-to-volume ratio and high surface energy (11–16). So far, numerous diagnostic platforms for cancer and infectious diseases have been developed by substituting enzymes, such as catalase, oxidase, and peroxidase with nanoparticle structures (17–20). Here, we adopted the intrinsic catalytic properties of platinum nanoparticles (PtNPs) for gas bubble formation to detect viruses on-chip using a convolutional neural network (CNN)–enabled smartphone system.

Johnson & Johnson said Thursday that late-stage clinical trials for its coronavirus vaccine are now fully enrolled, and expects to release initial data on the shot’s effectiveness by the end of January.


The pharmaceutical company’s single-dose vaccine is in Phase 3 clinical trials that are now fully enrolled, and is already being reviewed by Health Canada.

Mice, fruit flies and dogs are common creatures of laboratories across the country, valuable to researchers for their genetic proximity to humans. But what about lampreys?

A new Yale School of Public Health study has enlisted this unlikely and slimy ally in the fight against .

By carefully tracing the evolution of a select number of cancer-causing genes in a variety of species, the researchers evaluated which animals are—and are not—effective in gauging how an analog of those genes in humans can lead to cancer. What they found is surprising: such as lampreys share significant similarities in these certain genes compared to humans, while do not. Their findings, published in the journal Genome Biology and Evolution, will help molecular biologists and other scientists as they work to find potential cures to certain cancers, such as lymphoma.

An epidemiologist who helped to tie the 2012 outbreak of Middle East respiratory syndrome (MERS) to camels; a food-safety officer who studies how pathogens spread in markets; and a veterinarian who found evidence linking the 2014 West Africa Ebola outbreak to bats roosting in a hollow tree. These researchers are among the team that the World Health Organization (WHO) has assembled to investigate the origins of the coronavirus pandemic.


Ten researchers with expertise in virology, public health and animals will seek to answer this key question.

CSL’s Systems and Networking Research Group (SyNRG) is defining a new sub-area of mobile technology that they call “earable computing.” The team believes that earphones will be the next significant milestone in wearable devices, and that new hardware, software, and apps will all run on this platform.

“The leap from today’s earphones to ‘earables’ would mimic the transformation that we had seen from basic phones to smartphones,” said Romit Roy Choudhury, professor in electrical and (ECE). “Today’s smartphones are hardly a calling device anymore, much like how tomorrow’s earables will hardly be a smartphone accessory.”

Instead, the group believes tomorrow’s earphones will continuously sense , run acoustic augmented reality, have Alexa and Siri whisper just-in-time information, track user motion and health, and offer seamless security, among many other capabilities.

In this important conversation on health, David Gornoski sits down with Jim O’Neill, CEO of the SENS Research Foundation and former managing director of Thiel Capital. How do we effectively fight viruses such as COVID-19? O’Neill brings attention to the urgency of strengthening our immune systems. Why should we look into anti-aging? Anti-aging research, O’Neill says, looks into the possibility of targeting senescent cells where many diseases take hold. How soon can we see the results of this research? Given our societal norms, is overcoming death through scientific means something that we should look into? How does Christian teaching relate to the idea of overcoming death in time and space?

Visit SENS Research Foundation here:

Home


Follow Jim O’Neill on Twitter here:
https://twitter.com/regardthefrost/

Visit A Neighbor’s Choice website at https://www.aneighborschoice.com/

I think I want non-gene hacked pigs for my supper. 😃


For the second time ever, the U.S. Food and Drug Administration (FDA) approved a gene-hacked animal for human consumption.

In this case, it’s the GalSafe pig, CNN reports, a genetically modified swine that’s safe even for people with allergies to eat. All in all, it’s a fresh sign that genetically-altered animals and sophisticated gene-hacking technology are now becoming commercially viable and entering the mainstream.

“Today’s first ever approval of an animal biotechnology product for both food and as a potential source for biomedical use represents a tremendous milestone for scientific innovation,” FDA Commissioner Stephen Hahn said in a press release.

Is ADHD actually a superpower that goes out of control from time to time? Can it be turned into an advantage?


Unclench. Mary is just an urban legend—a case example of how people with Attention-Deficit/Hyperactivity Disorder can hyperfocus on a task for hours, losing all awareness of their surroundings. Hers is a story that people in the ADHD community tell themselves so we will feel less alone.

“We all hate the name ADHD,” says Elaine Taylor-Klaus, cofounder of Atlanta consultancy group ImpactADHD. Because the word “deficit” is in the name, many incorrectly assume having ADHD means you can’t pay attention. Instead, ADHDers often pay more attention to certain tasks than we should. It’s called hyperfocus.

Kimberly Gordon, a psychiatrist at Sheppard Pratt Health System in Baltimore, explains the symptom as “an intense, deep concentration on a specific task.” Like our mythological Mary, Gordon says, “When individuals with ADHD hyperfocus on one thing, they tend to block out everything else going on around them. The brain sends off signals of activity, pleasure, and engagement as they are immersed in a task while hyperfocused.”