Every industry will be affected by quantum computing. They will alter the way business is done and the security systems in place which protect data, how we battle illnesses and create new materials, as well as how we tackle health and climate challenges.
As the race to build the first commercially functional quantum computer heats up, here we discuss a handful of the ways quantum computing will alter our world.
Biomedical Interventions For Substantial Global Health Concerns — Dr. Emilio Emini, Ph.D., CEO, Bill & Melinda Gates Medical Research Institute
Dr. Emilio A. Emini, Ph.D. is the CEO of the Bill & Melinda Gates Medical Research Institute (https://www.gatesmri.org/), a non-profit organization dedicated to the development and effective use of novel biomedical interventions addressing substantial global health concerns, for which investment incentives are limited, and he leads the Institute’s research and development of novel products and interventions for diseases disproportionately impacting the world’s most vulnerable populations.
Before joining the Gates MRI, Dr. Emini served as director of the HIV and Tuberculosis program at the Bill & Melinda Gates Foundation, where he led the foundation’s efforts focused on accelerating the reduction in the incidence of HIV and TB in high-burden geographies, with the goal of achieving sustained epidemic control.
Over the course of his previous 30-year career in the bio-pharmaceutical industry, Dr. Emini led teams involved in the research and development of novel anti-infectives and vaccines. From 1983 to 2004, he led research at the Merck Research Laboratories involved in the development of one of the first highly active anti-retroviral therapies for HIV and, as senior vice president of vaccine research, the successful development of a number of vaccines including vaccines for human papillomavirus and rotavirus.
Dr. Emini later served as senior vice president of vaccine development at the International AIDS Vaccine Initiative. From 2005 to 2015, he was senior vice president of vaccine R&D at Pfizer Inc., leading the development of Prevnar 13® for prevention of pneumococcal disease.
SHANGHAI, March 22 (Reuters) — Not a single country managed to meet the World Health Organization’s (WHO) air quality standard in 2021, a survey of pollution data in 6,475 cities showed on Tuesday, and smog even rebounded in some regions after a COVID-related dip.
The WHO recommends that average annual readings of small and hazardous airborne particles known as PM2.5 should be no more than 5 micrograms per cubic metre after changing its guidelines last year, saying that even low concentrations caused significant health risks.
But only 3.4% of the surveyed cities met the standard in 2021, according to data complied by IQAir, a Swiss pollution technology company that monitors air quality. As many as 93 cities saw PM2.5 levels at 10 times the recommended level.
A.I. is only beginning to show what it can do for modern medicine.
In today’s society, artificial intelligence (A.I.) is mostly used for good. But what if it was not?
Naive thinking “The thought had never previously struck us. We were vaguely aware of security concerns around work with pathogens or toxic chemicals, but that did not relate to us; we primarily operate in a virtual setting. Our work is rooted in building machine learning models for therapeutic and toxic targets to better assist in the design of new molecules for drug discovery,” wrote the researchers in their paper. “We have spent decades using computers and A.I. to improve human health—not to degrade it. We were naive in thinking about the potential misuse of our trade, as our aim had always been to avoid molecular features that could interfere with the many different classes of proteins essential to human life.”
Full Story:
Researchers from Collaborations Pharmaceuticals tweaked artificial intelligence to look for chemical weapons, and impressively enough the machine learning algorithm found 40,000 options in just six hours.
New research from Griffith University has shown that a bacterium commonly present in the nose can sneak into the brain and set off a cascade of events that may lead to Alzheimer’s disease.
Associate Professor Jenny Ekberg and colleagues from the Clem Jones Centre for Neurobiology and Stem Cell Research at Menzies Health Institute Queensland and Griffith Institute for Drug Discovery, in collaboration with Queensland University of Technology, have discovered that the bacterium Chlamydia pneumoniae can invade the brain via the nerves of the nasal cavity.
Katie leads various initiatives, including launching their new Digital Trials Center, focusing on expanding the institute’s portfolio of decentralized clinical trial initiatives including: DETECT, a COVID-19 research initiative, PowerMom, a maternal health research program and PROGRESS, an upcoming T2 Diabetes/Precision Nutrition program, as well as overseeing the institute’s role in the NIH “All of Us” Research Program as a Participant Center.
The Scripps Research Translational Institute (SRTI), was founded in 2007 with the aim of individualizing healthcare by leveraging the remarkable progress being made in human genomics and combining it with the power of wireless digital technologies.
The Scripps Research Digital Trials Center, a part of SRTI, leads groundbreaking studies that address the world’s most pressing health concerns, by pioneering “site-less” clinical trials, leveraging rapidly evolving digital health technologies to re-engineer the clinical trial experience around the participant, rather than the research site.
The last-mile mobile health services provider, DocGo, has announced the delivery of its new all-electric, zero-emissions ambulance that eliminates the pollution of a standard gasoline ambulance.
The all–electric vehicle will be the first of its kind to be registered in the U.S. The new vehicle has been developed in partnership with Leader Emergency Vehicles in South El Monte, CA, and marks the first step towards “Zero Emission,” the company’s latest sustainability mission to have an all-electric fleet by 2032.
DocGo stated that its new vehicle produces 1/10th of the pollutants expelled by a standard gas-powered ambulance. In addition to being less harmful to the planet, the electric ambulance has the potential to lower patient transportation costs due to lower fuel costs and maintenance needs.
Synopsis: No sentient being in the evolutionary history of life has enjoyed good health as defined by the World Health Organization. The founding constitution of the World Health Organization commits the international community to a daringly ambitious conception of health: “a state of complete physical, mental and social wellbeing”. Health as so conceived is inconsistent with evolution via natural selection. Lifelong good health is inconsistent with a Darwinian genome. Indeed, the vision of the World Health Organization evokes the World Transhumanist Association. Transhumanists aspire to a civilization of superhappiness, superlongevity and superintelligence; but even an architecture of mind based on information-sensitive gradients of bliss cannot yield complete well-being. Post-Darwinian life will be sublime, but “complete” well-being is posthuman – more akin to Buddhist nirvana. So the aim of this talk is twofold. First, I shall explore the therapeutic interventions needed to underwrite the WHO conception of good health for everyone – or rather, a recognisable approximation of lifelong good health. What genes, allelic combinations and metabolic pathways must be targeted to deliver a biohappiness revolution: life based entirely on gradients of well-being? How can we devise a more civilized signalling system for human and nonhuman animal life than gradients of mental and physical pain? Secondly, how can genome reformists shift the Overton window of political discourse in favour of hedonic uplift? How can prospective parents worldwide – and the World Health Organization – be encouraged to embrace genome reform? For only germline engineering can fix the problem of suffering and create a happy biosphere for all sentient beings.
Researchers at NTNU have managed to restore muscle function in older mice with muscle loss using advanced gene therapy. The hope is that this method might eventually be used on humans to prevent severe loss of muscle mass.
“Gene therapy is the most effective method to be able to give these people the same health benefits you normally get with physical exercise,” says Moreira, who has been involved in the new research. He is part of the Cardiac Exercise Research Group (CERG).