Toggle light / dark theme

An analysis of more than 17 million people in England — the largest study of its kind, according to its authors — has pinpointed a bevy of factors that can raise a person’s chances of dying from COVID-19, the disease caused by the coronavirus.

The paper, published Wednesday in Nature, echoes reports from other countries that identify older people, men, racial and ethnic minorities, and those with underlying health conditions among the more vulnerable populations.

“This highlights a lot of what we already know about COVID-19,” said Uchechi Mitchell, a public health expert at the University of Illinois at Chicago who was not involved in the study. “But a lot of science is about repetition. The size of the study alone is a strength, and there is a need to continue documenting disparities.”

Antibiotic resistance is on the rise and is recognized by both the CDC1 and the U.S. Military2 as a current – and formidable – global health threat. The U.S Department of Defense (DoD) has long documented the warfighter’s outsized risk of exposure to infectious disease, including the increasing number of multi-drug resistant (MDR) organisms that have challenged military wound care in Iraq and Afghanistan3. Despite this looming crisis, there has been a notable exodus of pharmaceutical companies from the antibiotic space, as well as several high-profile failures of biotechnology companies focused on antibiotic development4. Current therapeutics to combat microbial infections, including MDR microbes and bacterial biothreats, are insufficient to meet the growing need, and existing methods to develop new treatments are too slow and/or costly to combat emerging drug resistance in pathogenic microorganisms.

DARPA’s Harnessing Enzymatic Activity for Lifesaving Remedies (HEALR) program aims to utilize a new therapeutic design toolkit and novel strategies/modalities to effectively treat microbial infections. Specifically, HEALR seeks to develop new medical countermeasures (MCMs) by recruiting native cellular machinery to recognize and clear disease-related targets for treating these infections. These advances could result in host-driven degradation or deactivation of pathogen targets, which may not only inhibit but could stop the pathogen in its tracks.

“HEALR presents the opportunity to identify drugs that are safer, more effective, and better address drug resistance and bacterial infections than existing therapeutic modalities,” noted Seth M. Cohen, Ph.D., program manager for the DARPA HEALR program. “By harnessing innate cellular processes, such as those exploited by proteolysis targeting chimeras (PROTACs) and similar approaches, HEALR intends to achieve superior outcomes over existing therapies.”

U.S. Cyber Command’s new training platform is slated to deliver the second iteration this fall providing additional capabilities and user capacity, program officials said.

The Persistent Cyber Training Environment (PCTE) is an online client that allows Cyber Command’s warriors to log on from anywhere in the world to conduct individual or collective cyber training as well as mission rehearsal. The program is being run by the Army on behalf of the joint cyber force and Cyber Command.

Officials delivered the first version of the program to Cyber Command in February and the environment was used for the first time in Cyber Command’s premier annual tier 1 exercise Cyber Flag in June. The second version is expected to include additional capabilities, including allowing more users to conduct team or individual training.

Pipeline owners Dominion and Duke Energy announced Sunday they were cancelling the fossil fuel project due to mounting delays and uncertainty. They said the many legal challenges to the project had driven up the projected costs by almost half, from $4.5 to $5 billion when it was first announced in 2014 to $8 billion according to the most recent estimate.

Environmental and community groups, who have long opposed the project on climate, conservation and racial justice grounds, welcomed the news.

“If anyone still had questions about whether or not the era of fracked gas was over, this should answer them,” Sierra Club Executive Director Michael Brune said in a statement emailed to EcoWatch. “Today is a historic victory for clean water, the climate, public health, and our communities. Duke and Dominion did not decide to cancel the Atlantic Coast Pipeline — the people and frontline organizations that led this fight for years forced them into walking away. Today’s victory reinforces that united communities are more powerful than the polluting corporations that put profits over our health and future.”

Gaithersburg, Md.-based Novavax said the funding will allow the company to participate in Operation Warp Speed, the government’s program that has a goal of supporting the development of hundreds of millions of vaccine doses by 2021. The funding granted to Novavax will support the late-stage clinical development of the vaccine candidate, including a pivotal Phase III study. Additionally, the funds will be used to establish large-scale manufacturing in order to deliver 100 million doses of NVX‑CoV2373 by the end of the year.

Stanley C. Erck, president and chief executive officer of Novavax, said the company was honored to partner with Operation Warp Speed, a program that is supporting multiple shots on goal against COVID-19 by backing multiple vaccine projects, including Moderna’s mRNA program and AstraZeneca’s vaccine candidate.

“The pandemic has caused an unprecedented public health crisis, making it more important than ever that industry, government and funding entities join forces to defeat the novel coronavirus together. We are grateful to the U.S. government for its confidence in our technology platform, and are working tirelessly to develop and produce a vaccine for this global health crisis,” Erck said in a statement.

Once an ecosystem is disturbed, restoring it can be difficult. And when the disturbed ecosystem is a patient’s microbiome, restoring the patient to health can be even more difficult. Just one ecosystem element that proliferates or diminishes beyond bounds may throw multiple elements into disarray, creating a dysbiosis that resists simple remedies.

Because a patient’s microbiome consists of interacting elements—including elements that extend beyond the microbiome itself—these elements cannot be seen in isolation. Rather, they are dynamic parts of a systemic whole. Touch any one of them, and the effects of doing so may ripple outward in unpredictable ways—unless the elements and their interactions are thoroughly understood.

“We are covered by, and protected by, and interacted with by vast microbial ecosystems,” says Julius Goepp, MD, founder of Scaled Microbiomics. Everywhere the body comes into contact with the outside environment, you’ll find a thriving community of microbes. This includes places that are obviously “external”—like skin and hair (including the skin and hair of underarms and nostrils)—as well as places that we consider to be “internal,” like the gastrointestinal tract.

“The surface of our gut is continuous with the outside world,” Goepp points out. The miracle of our gut, he continues, is that it can transport “two pounds of very nasty material [while keeping] it one cell layer away from our precious, sterile, inside tissue.”

But one cell layer can prove precarious protection, especially if that microbial ecosystem gets out of balance. The gut’s microbial ecosystem, Goepp suggests, is like the Amazon rainforest ecosystem in that it is resilient, but only to a point. When subjected to stressors such as prolonged exposure to antibiotics, a diet high in certain additives and low in fiber, and environmental pollution, the microbial ecosystem can be tipped far enough out of balance that a new normal becomes established. This is called dysbiosis, and it’s increasingly linked with a number of noncommunicable diseases, such as diabetes, neurodegenerative diseases, and cancer.


As the death toll from the COVID-19 pandemic mounts, scientists worldwide continue their push to develop effective treatments and a vaccine for the highly contagious respiratory virus.

University of South Florida Health (USF Health) Morsani College of Medicine scientists recently worked with colleagues at the University of Arizona College of Pharmacy to identify several existing compounds that block replication of the COVID-19 virus (SARS-CoV-2) within grown in the laboratory. The inhibitors all demonstrated potent chemical and structural interactions with a critical to the virus’s ability to proliferate.

The research team’s discovery study appeared June 15 in Cell Research, a high-impact Nature journal.

Elderly people are more prone to infectious diseases as the function of their immune system continuously declines with progression of age. This becomes especially apparent during seasonal influenza outbreaks or the occurrence of other viral diseases such as COVID-19. As the efficacy of vaccination in the elderly is strongly reduced, this age group is particularly vulnerable to such infectious pathogens and often shows the highest mortality rate. In addition to the age-related immune decline aged individuals are commonly affected by frailty that negatively impacts quality-of-life. Even though the average life-expectancy for humans continuous to rise, living longer is often associated with age-related health issues.

Important role of belly fat in aging processes identified

Researchers from the Department for BioMedical Reserarch (DBMR) and the Institute of Pathology at the University of Bern as well as the University Hospital Bern (Inselspital) have set out to identify new approaches to improve health-span in a fast-growing aging population. For many years scientists speculated that chronic low-grade inflammation accelerates aging processes and the development of age-related disorders. An international team of researchers under Bernese guidance has now demonstrated that visceral adipose tissue, known as belly fat, crucially contributes to the development of chronic low-grade inflammation. Scientist around Dr. Mario Noti, formerly at the Institute of Pathology of the University of Bern and Dr. Alexander Eggel from the Department for BioMedical Research (DBMR) of the Universität of Bern reported that certain immune cells in the belly fat play and an essential role in regulating chronic low-grade inflammation and downstream aging processes.