Toggle light / dark theme

Scientists headed by a team at the University of Utah Health have reported on research in mice suggesting that microbiome composition during infancy can shape development of pancreatic insulin-producing cells, leading to long-term changes in metabolism and impacting on diabetes risk later in life. The study, reported in Science by research co-lead June Round, PhD, professor of pathology at University of Utah Health, and colleagues, identified what the team describes as “a critical neonatal window in mice when microbiota disruption results in lifelong metabolic consequences stemming from reduced β cell development.”

Round suggests that understanding how the microbiome impacts metabolism could potentially lead to microbe-based treatments to prevent type 1 diabetes. “What I hope will eventually happen is that we’re going to identify these important microbes, and we’ll be able to give them to infants so that we can perhaps prevent this disease from happening altogether.”

In their published paper, titled “Neonatal fungi promote lifelong metabolic health through macrophage-dependent β cell development,” the team concluded that their results “… identify fungi as critical early-life commensals that promote long-term metabolic health …”

Cow D lived on a dairy farm in New Zealand. The animal looked like the typical black-and-white cow farmers raise for milk, except for one thing: Researchers had outfitted Cow D with an artificial fistula—a hole offering them a way to reach the microbes inhabiting the animal’s bathtub-size stomach. But it’s what happened next that offers a porthole into the global debate over the use of genetic data.

In the spring of 2009, Samantha Noel, then a doctoral researcher at Massey University in Palmerston North, New Zealand, reached into Cow D’s rumen and plucked out a strain of Lachnospiraceae bacterium, later dubbed ND2006. Another team of geneticists sequenced the microbe’s complete set of genes, or genome, and uploaded the information, which was then shared with GenBank, a public database run by the US National Institutes of Health. If genes are the book of life, then this process was like adding a digital copy to an online library. In policy circles, these lines of code go by another name: digital sequence information, or DSI.

We thought we knew the human body — but a new organ has been officially discovered.

In a groundbreaking discovery, researchers have officially classified the mesentery—a structure in the digestive system—as a distinct human organ.

Previously thought to be a fragmented and insignificant part of the abdominal cavity, new research reveals that the mesentery is actually a continuous structure that plays a crucial role in holding the intestines in place.

This reclassification, led by J Calvin Coffey from the University Hospital Limerick in Ireland, has been recognized in medical textbooks like Gray’s Anatomy and is now being taught to medical students. While its precise function remains unclear, studying this newly recognized organ could lead to breakthroughs in understanding and treating abdominal and digestive diseases.

The mesentery’s discovery marks the beginning of a new medical field—mesenteric science—which aims to uncover its role in human health. Researchers believe that a deeper understanding of its functions will help identify diseases linked to abnormal mesenteric activity. This revelation reminds us that, despite advances in science, there is still much to learn about our own bodies. With further research, the mesentery could hold key insights into improving gastrointestinal health and developing innovative treatments for abdominal disorders.

Learn more.


An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic for liver disease patients, is contributing to the global rise of a highly resistant strain of vancomycin-resistant Enterococcus faecium (VRE). This superbug, which frequently causes severe infections in hospitalized patients, is becoming increasingly difficult to treat.

The study, published in Nature, reveals that rifaximin use is accelerating resistance to daptomycin—one of the last remaining effective antibiotics against VRE infections.

Led by scientists from the University of Melbourne’s Peter Doherty Institute for Infection and Immunity (Doherty Institute) and Austin Health, the research underscores the urgent need for a more comprehensive understanding of the unintended consequences of antibiotic use. It highlights the critical importance of responsible antibiotic prescribing to mitigate the spread of antimicrobial resistance.

For decades, exercise was considered an optional part of cancer care—something beneficial for general health but not essential. The evidence is now overwhelming: exercise is not just supportive—it’s a therapeutic intervention that recalibrates tumor biology, enhances treatment tolerance, and improves survival outcomes.

With over 600 peer-reviewed studies, Dr. Kerry Courneya’s work has fundamentally reshaped our understanding of how structured exercise—whether aerobic, resistance training, or high-intensity intervals—can mitigate treatment side effects, enhance immune function, and directly influence cancer progression.

Train smarter with evidence-based strategies from top experts—get your free copy of “How to Train According to the Experts” at https://howtotrainguide.com/

CHAPTERS:
00:00:00 Introduction.
00:01:47 Why exercise should be effortful.
00:02:33 How to meaningfully reduce risk of cancer.
00:06:22 What type of exercise is best?
00:07:59 How exercise reduces risk—even for smokers and the obese.
00:10:48 Weekend-only exercise.
00:13:49 150 vs. 300 minutes per week (more is better—up to a point)
00:16:03 Why pre-diagnosis exercise matters.
00:19:09 Why resilience to cancer treatment starts with exercise.
00:21:01 Why low muscle mass drives cancer death.
00:23:58 Why BMI fails to measure true obesity.
00:27:51 Why daily activity isn’t enough (structured exercise matters)
00:29:34 Breaking up sedentary time—do ‘exercise snacks’ help?
00:31:50 Supplements vs. exercise.
00:32:32 Where exercise fits with chemo and immunotherapy.
00:35:30 Why rest is not the best medicine.
00:41:20 Aerobic vs. resistance.
00:42:11 How chemotherapy patients were able to put on over a kilogram of muscle.
00:42:13 How weight training improves ‘chemo completion’
00:44:41 Why exercise creates vulnerability in cancer cells (limitations do apply)
00:47:09 Why exercise might be crucial for tumor elimination.
00:53:03 Why cardio may be better at clearing tumor cells.
00:56:18 When cancer spreads quickly—and when it doesn’t.
00:57:43 Why liquid biopsies may prevent over-treatment.
01:02:56 Exercise-sensitive vs. exercise-resistant cancers.
01:06:06 Prostate cancer therapy—why strength training matters.
01:08:10 When exercise is the only therapy—does it work?
01:09:26 Why HIIT reduces PSA in prostate cancer.
01:11:40 Avoiding over-treatment—can exercise buy you time?
01:12:00 Why high-intensity exercise boosts anti-cancer biology.
01:13:11 Turning a diagnosis into a wake-up call.
01:16:11 Why oncologists are rethinking exercise.
01:18:50 Why exercise eases anxiety about cancer—proven psychological benefits.
01:25:00 Before, during, and after treatment.
01:27:02 Why exercise is unique among cancer therapies.
01:28:16 Why cancer patients stop exercising—the risky mistake almost everyone makes.
01:30:41 How to get sedentary cancer patients exercising (realistically)
01:33:15 The $1 million case for including exercise.
01:34:56 Why recurrence trials haven’t convinced doctors—yet.
01:37:36 The bottom-line message.
01:37:55 The myth of a cancer panacea (exercise included)
01:44:07 What’s the best $50 investment for staying active?
01:44:40 Only 15 minutes per day—what’s the best anti-cancer exercise?

A quick cautionary note: Always consult a qualified healthcare provider—presumably an oncologist if your questions involve cancer treatment—particularly if you’re considering actions based on or inspired by our conversation today. This episode should not be construed as a substitute for qualified medical advice.

*Kerry Courneya, PhD*

Researchers across 14 medical centers in China, including Peking University People’s Hospital, have found that an investigational drug, berberine ursodeoxycholate (HTD1801), significantly lowered blood sugar levels and improved metabolic and liver health in patients with type 2 diabetes (T2D). The findings and an invited commentary, both published in JAMA Network Open, suggest that HTD1801 could serve as a new oral treatment option for T2D and its related complications.

A dietitian has issued a warning that many people are lacking a crucial nutrient that can reduce the risks of diabetes, heart disease, and cancer.

Dr. Carrie Ruxton has provided insights on the recommended intake, its health benefits, and how to include it in your diet. The medical specialist and advisor to the General Mills fibe r campaign stated that millions of people were “missing out on a vital nutrient which protects us against killer diseases simply because they don’t understand what it does in the body.” That’s the finding of a report about fiber — often called roughage.

Dr. Ruxton said that “adults should eat 30 grams of fiber a day.” But she added: “In reality, people are missing the target by a huge 10 g/day, placing themselves at greater risk of the world’s biggest killers – type 2 diabetes, cardiovascular disease, and cancer.

A self-acclaimed “deep tech” company focused on the next generation of computing has unveiled three smart contact lens prototypes at MWC 2025, giving us a glimpse into the technology that could shape vision health of the future.

XPANCEO took the covers off its three prototypes, each one showcasing a unique technology that could feature in future “smart” contact lenses.

Constantly worrying about events beyond your control significantly harms your physical health.

S stress-response system activated, leading to chronic stress. Over time, such stress can weaken the immune system, making us more susceptible to infections and illnesses. + Additionally, chronic stress is linked to cardiovascular issues, including hypertension and an increased risk of heart disease.

S prolonged exposure to stress hormones like cortisol can also lead to digestive problems, muscle tension, and headaches. + Moreover, the mental strain from focusing on uncontrollable factors can lead to unhealthy coping mechanisms, such as overeating or substance abuse, further impacting physical well-being.

S out there. It gets better. +

Get help: https://www.nimh.nih.gov/health/find-help


Stress affects all systems of the body including the musculoskeletal, respiratory, cardiovascular, endocrine, gastrointestinal, nervous, and reproductive systems.

AI-powered precision in medicine is helping to enhance the accuracy, efficiency, and personalization of medical treatments and healthcare interventions. Machine learning models analyze vast datasets, including genetic information, disease pathways, and past clinical outcomes, to predict how drugs will interact with biological targets. This not only speeds up the identification of promising compounds but also helps eliminate ineffective or potentially harmful options early in the research process.

Researchers are also turning to AI to improve how they evaluate a drug’s effectiveness across diverse patient populations. By analyzing real-world data, including electronic health records and biomarker responses, AI can help researchers identify patterns that predict how different groups may respond to a treatment. This level of precision helps refine dosing strategies, minimize side effects, and support the development of personalized medicine where treatments are tailored to an individual’s genetic and biological profile.

AI is having a positive impact on the pharmaceutical industry helping to reshape how drugs are discovered, tested, and brought to market. From accelerating drug development and optimizing research to enhancing clinical trials and manufacturing, AI is reducing costs, improving efficiency, and ultimately delivering better treatments to patients.