БЛОГ

Archive for the ‘information science’ category: Page 11

Jan 3, 2024

New insight into how brain adjusts synaptic connections during learning may inspire more robust AI

Posted by in categories: biological, information science, robotics/AI

How the brain adjusts connections between #neurons during learning: this new insight may guide further research on learning in brain networks and may inspire faster and more robust learning #algorithms in #artificialintelligence.


Researchers from the MRC Brain Network Dynamics Unit and Oxford University’s Department of Computer Science have set out a new principle to explain how the brain adjusts connections between neurons during learning. This new insight may guide further research on learning in brain networks and may inspire faster and more robust learning algorithms in artificial intelligence.

The essence of learning is to pinpoint which components in the information-processing pipeline are responsible for an error in output. In , this is achieved by backpropagation: adjusting a model’s parameters to reduce the error in the output. Many researchers believe that the brain employs a similar learning principle.

Continue reading “New insight into how brain adjusts synaptic connections during learning may inspire more robust AI” »

Dec 31, 2023

Anne M. Andrews and Paul S. Weiss Public Lecture: Nanotechnology Meets Neuroscience and Medicine

Posted by in categories: biotech/medical, information science, nanotechnology, neuroscience

In their public lecture at Perimeter on May 1, 2019, neuroscientist Anne M. Andrews and nanoscientist Paul S. Weiss outlined their scientific collaboration and explained the importance of communicating across disciplines to target significant problems. \
\
Perimeter Institute (charitable registration number 88,981 4323 RR0001) is the world’s largest independent research hub devoted to theoretical physics, created to foster breakthroughs in the fundamental understanding of our universe, from the smallest particles to the entire cosmos. The Perimeter Institute Public Lecture Series is made possible in part by the support of donors like you. Be part of the equation: https://perimeterinstitute.ca/inspiri…\
\
Subscribe for updates on future live webcasts, events, free posters, and more: https://insidetheperimeter.ca/newslet…\
\
facebook.com/pioutreach \
twitter.com/perimeter \
instagram.com/perimeterinstitute \
Donate: https://perimeterinstitute.ca/give-today

Dec 30, 2023

NEW Alter 3 GPT4 AI Robot w/ 43 Axes (DEMOS SEVERAL NEXT GEN ABILITIES)

Posted by in categories: information science, robotics/AI, transportation

Alter 3 has just been unveiled by the University of Tokyo and its powered by GPT-4, capable of human-like activities and interpreting verbal instructions. Researchers at the Technical University of Munich developed a self-aware robot with proprioception, enhancing its movement and interaction capabilities. The University of Southern California introduced RoboCLIP, an algorithm that trains robots to perform tasks in new environments with minimal instruction. Intel Labs and partners created advanced motor control for robots using hierarchical generative models, significantly improving their ability to perform complex tasks.\
\
Deep Learning AI Specialization: https://imp.i384100.net/GET-STARTED\
AI Marketplace: https://taimine.com/\
\
AI news timestamps:\
0:00 Alter 3 GPT4 powered AI robot\
1:31 Robot self awareness\
3:30 RoboCLIP\
5:22 Motor control for autonomous robots\
\
#ai #robot #technology

Dec 29, 2023

The Equation That Explains (Nearly) Everything!

Posted by in category: information science

Check Out Rogue History On PBS Origins: https://youtu.be/xuT35ud41QQPBS Member Stations rely on viewers like you. To support your local station, go to: http:/…

Dec 28, 2023

The secrets of Einstein’s unknown equation — with Sean Carroll

Posted by in categories: cosmology, information science, space travel

Did you know that Einstein’s most important equation isn’t E=mc^2? Find out all about his equation that expresses how spacetime curves, with Sean Carroll.

Buy Sean’s book here: https://geni.us/AIAOUHn.
YouTube channel members can watch the Q&A for this lecture here: • Q&A: The secrets of Einstein’s unknow…

Continue reading “The secrets of Einstein’s unknown equation — with Sean Carroll” »

Dec 28, 2023

Ep. 20: J. Storrs Hall — Bringing Back A Future Past With Flying Cars, Nano-Robots and Multi-Level Cities By Nurturing A Techno-Optimist Culture and a Unleashing Second Nuclear Age

Posted by in categories: bioengineering, economics, genetics, information science, nanotechnology, robotics/AI

An interview with J. Storrs Hall, author of the epic book “Where is My Flying Car — A Memoir of Future Past”: “The book starts as an examination of the technical limitations of building flying cars and evolves into an investigation of the scientific, technological, and social roots of the economic…


J. Storrs Hall or Josh is an independent researcher and author.

Continue reading “Ep. 20: J. Storrs Hall — Bringing Back A Future Past With Flying Cars, Nano-Robots and Multi-Level Cities By Nurturing A Techno-Optimist Culture and a Unleashing Second Nuclear Age” »

Dec 27, 2023

Physicists Designed an Experiment to Turn Light Into Matter

Posted by in categories: information science, physics

It would be a tangible demonstration of Einstein’s famous E = mc^2 equation.

Dec 26, 2023

Testing the biological reasoning capabilities of large language models

Posted by in categories: biotech/medical, information science, robotics/AI

Large language models (LLMs) are advanced deep learning algorithms that can process written or spoken prompts and generate texts in response to these prompts. These models have recently become increasingly popular and are now helping many users to create summaries of long documents, gain inspiration for brand names, find quick answers to simple queries, and generate various other types of texts.

Researchers at the University of Georgia and Mayo Clinic recently set out to assess the biological knowledge and reasoning skills of different LLMs. Their paper, pre-published on the arXiv server, suggests that OpenAI’s model GPT-4 performs better than the other predominant LLMs on the market on reasoning biology problems.

“Our recent publication is a testament to the significant impact of AI on biological research,” Zhengliang Liu, co-author of the recent paper, told Tech Xplore. “This study was born out of the rapid adoption and evolution of LLMs, especially following the notable introduction of ChatGPT in November 2022. These advancements, perceived as critical steps towards Artificial General Intelligence (AGI), marked a shift from traditional biotechnological approaches to an AI-focused methodology in the realm of biology.”

Dec 26, 2023

AI ‘scientist’ re-discovers scientific equations using data

Posted by in categories: information science, robotics/AI

The tool — dubbed ‘AI-Descartes’ by the researchers — aims to speed up scientific discovery by leveraging symbolic regression, which finds equations to fit data.

Given basic operators, such as addition, multiplication, and division, the systems can generate hundreds to millions of candidate equations, searching for the ones that most accurately describe the relationships in the data.

Using this technique, the AI tool has been able to re-discover, by itself, fundamental equations, including Kepler’s third law of planetary motion; Einstein’s relativistic time-dilation law, and Langmuir’s equation of gas adsorption.

Dec 25, 2023

Harvard Unveils World’s First Logical Quantum Processor

Posted by in categories: computing, information science, particle physics, quantum physics

Harvard’s breakthrough in quantum computing features a new logical quantum processor with 48 logical qubits, enabling large-scale algorithm execution on an error-corrected system. This development, led by Mikhail Lukin, represents a major advance towards practical, fault-tolerant quantum computers.

In quantum computing, a quantum bit or “qubit” is one unit of information, just like a binary bit in classical computing. For more than two decades, physicists and engineers have shown the world that quantum computing is, in principle, possible by manipulating quantum particles ­– be they atoms, ions or photons – to create physical qubits.

But successfully exploiting the weirdness of quantum mechanics for computation is more complicated than simply amassing a large-enough number of physical qubits, which are inherently unstable and prone to collapse out of their quantum states.

Page 11 of 290First89101112131415Last