БЛОГ

Archive for the ‘information science’ category: Page 174

Sep 4, 2021

New AI Algorithm Improves Brain Stimulation Devices to Treat Disease

Posted by in categories: biotech/medical, information science, robotics/AI

Summary: Novel AI technology allows researchers to understand which brain regions directly interact with each other, which helps guide the placement of electrodes for DBS to treat neurological diseases.

Source: Mayo Clinic.

For millions of people with epilepsy and movement disorders such as Parkinson’s disease, electrical stimulation of the brain already is widening treatment possibilities. In the future, electrical stimulation may help people with psychiatric illness and direct brain injuries, such as stroke.

Sep 3, 2021

Segway’s robot mower uses GPS to stay on your lawn

Posted by in categories: information science, robotics/AI, transportation

There’s no need to install a perimeter wire with the Navimow.


Is moving into the robot mower market with the Navimow. What sets this model apart from many others is that you don’t need to install a boundary wire. Instead, Navimow uses GPS and other sensors to stay within the perimeter of your lawn.

A so-called Exact Fusion Locating System can maintain Navimow’s position accurate to within two centimeters, according to Segway. If the GPS signal ever dips, the company says the device’s array of sensors and data ensure it will still work. You can tell Navimow where to mow, define the boundaries and instruct it to avoid certain parts of your garden via an app. Segway claims Navimow uses an algorithm to figure out a mowing path so it doesn’t have to criss-cross.

Continue reading “Segway’s robot mower uses GPS to stay on your lawn” »

Sep 3, 2021

AI Can Predict Possible Alzheimer’s With Nearly 100 Percent Accuracy

Posted by in categories: biotech/medical, information science, robotics/AI

Summary: A new AI algorithm can predict the onset of Alzheimer’s disease with an accuracy of over 99% by analyzing fMRI brain scans.

Source: Kaunas University of Technology.

Researchers from Kaunas University, Lithuania developed a deep learning-based method that can predict the possible onset of Alzheimer’s disease from brain images with an accuracy of over 99 percent. The method was developed while analyzing functional MRI images obtained from 138 subjects and performed better in terms of accuracy, sensitivity, and specificity than previously developed methods.

Sep 3, 2021

Cashierless checkout company Zippin raises $30M

Posted by in categories: information science, robotics/AI

The cashierless technology shift continues apace with today’s news that Zippin has raised $30 million in a series B round of funding. The San Francisco-based company is one of several players in the space to gain traction for a technology that seeks to not only make supermarket queues obsolete, but also generate big data insights for retailers.

Founded in 2,018 Zippin leverages AI, cameras, and smart shelf sensors to enable shoppers to place items in their cart and walk out without waiting. The company opened its first checkout-free store in San Francisco back in 2018, and it has since entered into partnerships with the likes of Aramark, Sberbank, and the Sacramento Kings’ Golden 1 Center to power cashierless stores globally.

Zippin had previously raised around $15 million, and with another $30 million from SAP, Maven Ventures, Evolv Ventures, and OurCrowd, the company is well-financed to capitalize on the retail industry’s continued push toward automation-powered efficiency. The company said its ultimate goal is to retrofit stores with the required technology inside a day, with minimal downtime for retailers.

Sep 1, 2021

The Mathematical Structure of Integrated Information Theory

Posted by in categories: information science, mathematics, neuroscience, quantum physics

Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the theory which may serve as the starting point for future formal investigations and as an introduction suitable for researchers with a formal background.

Integrated Information Theory (IIT), developed by Giulio Tononi and collaborators [5, 45–47], has emerged as one of the leading scientific theories of consciousness. At the heart of the latest version of the theory [19, 25 26, 31 40] is an algorithm which, based on the level of integration of the internal functional relationships of a physical system in a given state, aims to determine both the quality and quantity (‘Φ value’) of its conscious experience.

Aug 31, 2021

AI identifies single diseased cells

Posted by in categories: biotech/medical, information science, life extension, robotics/AI

The Human Cell Atlas is the world’s largest, growing single-cell reference atlas. It contains references of millions of cells across tissues, organs and developmental stages. These references help physicians to understand the influences of aging, environment and disease on a cell—and ultimately diagnose and treat patients better. Yet, reference atlases do not come without challenges. Single-cell datasets may contain measurement errors (batch effect), the global availability of computational resources is limited and the sharing of raw data is often legally restricted.

Researchers from Helmholtz Zentrum München and the Technical University of Munich (TUM) developed a novel called “scArches,” short for single-cell architecture surgery. The biggest advantage: “Instead of sharing raw data between clinics or research centers, the algorithm uses transfer learning to compare new from single-cell genomics with existing references and thus preserves privacy and anonymity. This also makes annotating and interpreting of new data sets very easy and democratizes the usage of single-cell reference atlases dramatically,” says Mohammad Lotfollahi, the leading scientist of the algorithm.

Aug 31, 2021

Russian Startup Develops Detection Technology for Face, Bodies and Vehicles

Posted by in categories: information science, transportation

Russian start-up NTechLab has released FindFace Multi, a detection technology that uses an advanced algorithm to recognize not only faces, but also bodies of people and cars. This is an update to the company’s flagship product and is able to support numerous video streams and facial database entries.

Body recognition allows FindFace Multi users to count and search people moving through an environment as well as identifying individuals and tracking movements. The algorithm also takes into account markers such as height, color of clothes and accessories.

The vehicle recognition function determines the body type, color, manufacturer, and model of a car, as well as searching by license plate. Even if license plates, or parts of the vehicle are not visible or obscured, the system can still identify a car.

Aug 31, 2021

ARROW, a reconfigurable fiber optics network, aims to take on the end of Moore’s law

Posted by in categories: biotech/medical, health, information science, mobile phones, robotics/AI

Wide Area Networks (WANs), the global backbones and workhorses of today’s internet that connect billions of computers over continents and oceans, are the foundation of modern online services. As COVID-19 has placed a vital reliance on online services, today’s networks are struggling to deliver high bandwidth and availability imposed by emerging workloads related to machine learning, video calls, and health care.

To connect WANs over hundreds of miles, fiber optic cables that transmit data using light are threaded throughout our neighborhoods, made of incredibly thin strands of glass or plastic known as optical fibers. While they’re extremely fast, they’re not always reliable: They can easily break from weather, thunderstorms, accidents, and even animals. These tears can cause severe and expensive damage, resulting in 911 service outages, lost connectivity to the internet, and inability to use smartphone apps.

Continue reading “ARROW, a reconfigurable fiber optics network, aims to take on the end of Moore’s law” »

Aug 29, 2021

RNA Structures Predicted with Uncanny Accuracy

Posted by in categories: information science, robotics/AI

“The network learned to find fundamental concepts that are key to molecular structure formation, but without explicitly being told to,” Townshend added. “The exciting aspect is that the algorithm has clearly recovered things that we knew were important, but it has also recovered characteristics that we didn’t know about before.”

Having shown success with proteins, the researchers turned their attention to RNA molecules. The researchers tested their algorithm in a series of “RNA Puzzles” from a longstanding competition in their field, and in every case, the tool outperformed all the other puzzle participants and did so without being designed specifically for RNA structures.

“We introduce a machine learning approach that enables identification of accurate structural models without assumptions about their defining characteristics, despite being trained with only 18 known RNA structures,” the authors of the Science article wrote. “The resulting scoring function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous methods and consistently produces the best results in community-wide blind RNA structure prediction challenges.”

Aug 29, 2021

Novel Nanophotonic Analog Processor Developed for High Performance Computing

Posted by in categories: computing, information science

Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches.

In a new study published on August 26 2021, in the journal Nature Communications Physics, researchers led by Volker Sorger, an associate professor of electrical and computer engineering at the George Washington University, reveal a new nanophotonic analog processor capable of solving partial differential equations. This nanophotonic processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light.

The research team also included researchers at the University of California, Los Angeles, and City College of New York.