БЛОГ

Archive for the ‘information science’ category: Page 195

Jul 20, 2019

What if you were immune to chronic pain?

Posted by in categories: biotech/medical, information science, neuroscience

Our current approach to treating chronic pain is drug-based, but a vaccine-based approach can cut addiction out of the equation. In this video, Big Think contributor Lou Reese, co-founder of United Neuroscience, explains how soon we may soon be able to vaccinate people, en masse, against pain!

Jul 20, 2019

A new set of images that fool AI could help make it more hacker-proof

Posted by in categories: information science, robotics/AI

Squirrels mislabeled as sea lions and dragonflies confused with manhole covers are challenging algorithms to be more resilient to attacks.

Jul 17, 2019

Australian Researchers Have Just Released The World’s First AI-Developed Vaccine

Posted by in categories: biotech/medical, information science, robotics/AI, space

A team at Flinders University in South Australia has developed a new vaccine believed to be the first human drug in the world to be completely designed by artificial intelligence (AI).

While drugs have been designed using computers before, this vaccine went one step further being independently created by an AI program called SAM (Search Algorithm for Ligands).

Flinders University Professor Nikolai Petrovsky who led the development told Business Insider Australia its name is derived from what it was tasked to do: search the universe for all conceivable compounds to find a good human drug (also called a ligand).

Jul 17, 2019

Towards reconstructing intelligible speech from the human auditory cortex

Posted by in categories: biotech/medical, cyborgs, information science, robotics/AI

Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and has been shown to be possible in both overt and covert conditions. However, the low quality of the reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct closed-set intelligible speech from the human auditory cortex. We investigated the dependence of reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the acoustic representation that is used as the target of reconstruction, including auditory spectrogram and speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our results show that a deep neural network model that directly estimates the parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI systems, which not only can restore communications for paralyzed patients but also have the potential to transform human-computer interaction technologies.

Jul 15, 2019

Researchers’ deep learning algorithm solves Rubik’s Cube faster than any human

Posted by in categories: information science, mathematics, robotics/AI

Since its invention by a Hungarian architect in 1974, the Rubik’s Cube has furrowed the brows of many who have tried to solve it, but the 3D logic puzzle is no match for an artificial intelligence system created by researchers at the University of California, Irvine.

DeepCubeA, a learning algorithm programmed by UCI scientists and mathematicians, can find the solution in a fraction of a second, without any specific domain knowledge or in-game coaching from humans. This is no simple task considering that the cube has completion paths numbering in the billions but only one goal state—each of six sides displaying a solid color—which apparently can’t be found through random moves.

For a study published today in Nature Machine Intelligence, the researchers demonstrated that DeepCubeA solved 100 percent of all test configurations, finding the to the goal state about 60 percent of the time. The algorithm also works on other combinatorial games such as the sliding tile , Lights Out and Sokoban.

Jul 9, 2019

Artificial Intelligence: A History

Posted by in categories: information science, robotics/AI

What Is Big Data? & How Big Data Is Changing The World! https://www.facebook.com/singularityprosperity/videos/439181406563439/


In this video, we’ll be discussing big data – more specifically, what big data is, the exponential rate of growth of data, how we can utilize the vast quantities of data being generated as well as the implications of linked data on big data.

Continue reading “Artificial Intelligence: A History” »

Jul 9, 2019

Neuroscience and artificial intelligence can help improve each other

Posted by in categories: bioengineering, biological, information science, neuroscience, robotics/AI

Despite their names, artificial intelligence technologies and their component systems, such as artificial neural networks, don’t have much to do with real brain science. I’m a professor of bioengineering and neurosciences interested in understanding how the brain works as a system – and how we can use that knowledge to design and engineer new machine learning models.

In recent decades, brain researchers have learned a huge amount about the physical connections in the brain and about how the nervous system routes information and processes it. But there is still a vast amount yet to be discovered.

At the same time, computer algorithms, software and hardware advances have brought machine learning to previously unimagined levels of achievement. I and other researchers in the field, including a number of its leaders, have a growing sense that finding out more about how the brain processes information could help programmers translate the concepts of thinking from the wet and squishy world of biology into all-new forms of machine learning in the digital world.

Jul 7, 2019

This Brain Implant Could Change Lives

Posted by in categories: biotech/medical, information science, neuroscience

It sounds like science fiction: a device that can reconnect a paralyzed person’s brain to his or her body. But that’s exactly what the experimental NeuroLife system does. Developed by Battelle and Ohio State University, NeuroLife uses a brain implant, an algorithm and an electrode sleeve to give paralysis patients back control of their limbs. For Ian Burkhart, NeuroLife’s first test subject, the implications could be life-changing.

Featured in this episode:

Continue reading “This Brain Implant Could Change Lives” »

Jul 6, 2019

New approach aids search for genetic roots of complex conditions

Posted by in categories: biotech/medical, genetics, information science, neuroscience

A new method enables researchers to test algorithms for spotting genes that contribute to a complex trait or condition, such as autism.

Researchers often study the genetics of complex traits using genome-wide association studies (GWAS). In these studies, scientists compare the genomes of people who have a condition with those of people without the condition, looking for genetic variants likely to contribute to the condition. These studies often require tens of thousands of people to yield statistically significant results.

GWAS have identified more than 100 genomic regions associated with schizophrenia, for example, and 12 linked to autism. Results are often difficult to interpret, however. Causal variants for a condition may be inherited with nearby sections of DNA that do not play a role.

Jul 6, 2019

Algorithmic Warfare: DARPA’s ‘AI Next’ Program Bearing Fruit

Posted by in categories: information science, military, robotics/AI

The Defense Advanced Research Projects Agency made headlines last fall when it announced that it was pledging $2 billion for a multi-year effort to develop new artificial intelligence technology.

Months later, DARPA’s “AI Next” program is already bearing fruit, said Peter Highnam, the agency’s deputy director.

DARPA — which has for decades fostered some of the Pentagon’s most cutting-edge capabilities — breaks down AI technology development into three distinct waves, he said during a meeting with reporters in Washington, D.C.