БЛОГ

Archive for the ‘information science’ category: Page 3

Feb 27, 2024

Super-Resolution Microscopy Harnesses Digital Display Technology

Posted by in categories: information science, innovation

In the ever-evolving realm of microscopy, recent years have witnessed remarkable strides in both hardware and algorithms, propelling our ability to explore the infinitesimal wonders of life. However, the journey towards three-dimensional structured illumination microscopy (3DSIM) has been hampered by challenges arising from the speed and intricacy of polarization modulation.

Enter the high-speed modulation 3DSIM system “DMD-3DSIM,” combining digital display with super-resolution imaging, allowing scientists to see cellular structures in unprecedented detail.

As reported in Advanced Photonics Nexus, Professor Peng Xi’s team at Peking University developed this innovative setup around a digital micromirror device (DMD) and an electro-optic modulator (EOM). It tackles resolution challenges by significantly improving both lateral (side-to-side) and axial (top-to-bottom) resolution, for a 3D spatial resolution reportedly twice that achieved by traditional wide-field imaging techniques.

Feb 27, 2024

Algorithms are everywhere

Posted by in categories: education, energy, information science, internet

Chayka argues that cultivating our own personal taste is important, not because one form of culture is demonstrably better than another, but because that slow and deliberate process is part of how we develop our own identity and sense of self. Take that away, and you really do become the person the algorithm thinks you are.

As Chayka points out in Filterworld, algorithms “can feel like a force that only began to exist … in the era of social networks” when in fact they have “a history and legacy that has slowly formed over centuries, long before the Internet existed.” So how exactly did we arrive at this moment of algorithmic omnipresence? How did these recommendation machines come to dominate and shape nearly every aspect of our online and (increasingly) our offline lives? Even more important, how did we ourselves become the data that fuels them?

These are some of the questions Chris Wiggins and Matthew L. Jones set out to answer in How Data Happened: A History from the Age of Reason to the Age of Algorithms. Wiggins is a professor of applied mathematics and systems biology at Columbia University. He’s also the New York Times’ chief data scientist. Jones is now a professor of history at Princeton. Until recently, they both taught an undergrad course at Columbia, which served as the basis for the book.

Feb 26, 2024

Fundamental equation for superconducting quantum bits revised

Posted by in categories: computing, information science, quantum physics

Physicists from Forschungszentrum Jülich and the Karlsruhe Institute of Technology have uncovered that Josephson tunnel junctions—the fundamental building blocks of superconducting quantum computers—are more complex than previously thought.

Just like overtones in a , harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are two to seven times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe, including the University of Cologne, Ecole Normale Supérieure in Paris, and IBM Quantum in New York.

It all started in 2019, when Dr. Dennis Willsch and Dennis Rieger—two Ph.D. students from FZJ and KIT at the time and joint first authors of a new paper published in Nature Physics —were having a hard time understanding their experiments using the standard model for Josephson tunnel junctions. This model had won Brian Josephson the Nobel Prize in Physics in 1973.

Feb 26, 2024

Physicists Discover Evidence of Time Being Reversible in Glass

Posted by in categories: information science, physics

Time’s inexorable march might well wait for no one, but a new experiment by researchers at the Technical University of Darmstadt in Germany and Roskilde University in Denmark shows how in some materials it might occasionally shuffle.

An investigation into the way substances like glass age has uncovered the first physical evidence of a material-based measure of time being reversible.

For the most part the laws of physics care little about time’s arrow. Flip an equation describing the movement of an object and you can easily calculate where it started. We describe such laws as time reversible.

Feb 24, 2024

Nonequilibrium solvent response force: What happens if you push a Brownian particle

Posted by in categories: information science, particle physics

Forces cannot simply be added to the Langevin equation. Momentum transfer from the Brownian particle on the solvent always produces an additional nonequilibrium solvent response force that has highly nontrivial statistical properties.

Feb 21, 2024

Quantum annealers and the future of prime factorization

Posted by in categories: encryption, information science, quantum physics, security

Researchers at the University of Trento, Italy, have developed a novel approach for prime factorization via quantum annealing, leveraging a compact modular encoding paradigm and enabling the factorization of large numbers using D-Wave quantum devices.

Prime factorization is the procedure of breaking down a number into its prime components. Every integer greater than one can be uniquely expressed as a product of prime numbers.

In cryptography, prime factorization holds particular importance due to its relevance to the security of encryption algorithms, such as the widely used RSA cryptosystem.

Feb 21, 2024

New technology can reveal what’s hidden behind objects using algorithm

Posted by in categories: information science, law enforcement, mathematics, virtual reality

The technology can reconstruct a hidden scene in just minutes using advanced mathematical algorithms.


Potential use case scenarios

Law enforcement agencies could use the technology to gather critical information about a crime scene without disturbing the evidence. This could be especially useful in cases where the scene is dangerous or difficult to access. For example, the technology could be used to reconstruct the scene of a shooting or a hostage situation from a safe distance.

Continue reading “New technology can reveal what’s hidden behind objects using algorithm” »

Feb 21, 2024

Let’s build the GPT Tokenizer

Posted by in categories: health, information science, robotics/AI

W/ Andrej Karpathy


The Tokenizer is a necessary and pervasive component of Large Language Models (LLMs), where it translates between strings and tokens (text chunks). Tokenizers are a completely separate stage of the LLM pipeline: they have their own training sets, training algorithms (Byte Pair Encoding), and after training implement two fundamental functions: encode() from strings to tokens, and decode() back from tokens to strings. In this lecture we build from scratch the Tokenizer used in the GPT series from OpenAI. In the process, we will see that a lot of weird behaviors and problems of LLMs actually trace back to tokenization. We’ll go through a number of these issues, discuss why tokenization is at fault, and why someone out there ideally finds a way to delete this stage entirely.

Continue reading “Let’s build the GPT Tokenizer” »

Feb 21, 2024

Science fiction meets reality as researchers develop techniques to overcome obstructed views

Posted by in categories: information science, law enforcement, military

After a recent car crash, John Murray-Bruce wished he could have seen the other car coming. The crash reaffirmed the USF assistant professor of computer science and engineering’s mission to create a technology that could do just that: See around obstacles and ultimately expand one’s line of vision.

Using a single photograph, Murray-Bruce and his doctoral student, Robinson Czajkowski, created an algorithm that computes highly accurate, full-color three-dimensional reconstructions of areas behind obstacles—a concept that can not only help prevent car crashes but help law enforcement experts in hostage situations search-and-rescue and strategic military efforts.

“We’re turning ordinary surfaces into mirrors to reveal regions, objects, and rooms that are outside our line of vision,” Murray-Bruce said. “We live in a 3D world, so obtaining a more complete 3D picture of a scenario can be critical in a number of situations and applications.”

Feb 21, 2024

Neuromorphic Computing from the Computer Science Perspective: Algorithms and Applications

Posted by in categories: information science, robotics/AI, science, transportation

Speaker’s Bio: Catherine (Katie) Schuman is a research scientist at Oak Ridge National Laboratory (ORNL). She received her Ph.D. in Computer Science from the University of Tennessee (UT) in 2015, where she completed her dissertation on the use of evolutionary algorithms to train spiking neural networks for neuromorphic systems. She is continuing her study of algorithms for neuromorphic computing at ORNL. Katie has an adjunct faculty appointment with the Department of Electrical Engineering and Computer Science at UT, where she co-leads the TENNLab neuromorphic computing research group. Katie received the U.S. Department of Energy Early Career Award in 2019.

Talk Abstract: Neuromorphic computing is a popular technology for the future of computing. Much of the focus in neuromorphic computing research and development has focused on new architectures, devices, and materials, rather than in the software, algorithms, and applications of these systems. In this talk, I will overview the field of neuromorphic from the computer science perspective. I will give an introduction to spiking neural networks, as well as some of the most common algorithms used in the field. Finally, I will discuss the potential for using neuromorphic systems in real-world applications from scientific data analysis to autonomous vehicles.

Continue reading “Neuromorphic Computing from the Computer Science Perspective: Algorithms and Applications” »

Page 3 of 29012345678Last