Archive for the ‘information science’ category: Page 6

Aug 7, 2021

Innovation is a risk!

Posted by in categories: big data, computing, disruptive technology, evolution, homo sapiens, information science, innovation, internet, moore's law, robotics/AI, singularity, supercomputing

No, it’s not forbidden to innovate, quite the opposite, but it’s always risky to do something different from what people are used to. Risk is the middle name of the bold, the builders of the future. Those who constantly face resistance from skeptics. Those who fail eight times and get up nine.

(Credit: Adobe Stock)

Fernando Pessoa’s “First you find it strange. Then you can’t get enough of it.” contained intolerable toxicity levels for Salazar’s Estado Novo (Portugal). When the level of difference increases, censorship follows. You can’t censor censorship (or can you?) when, deep down, it’s a matter of fear of difference. Yes, it’s fear! Fear of accepting/facing the unknown. Fear of change.

Continue reading “Innovation is a risk!” »

Aug 6, 2021

Microsoft AI Researchers Introduce A Neural Network With 135 Billion Parameters And Deployed It On Bing To Improve Search Results

Posted by in categories: information science, internet, robotics/AI

Transformer-based deep learning models like GPT-3 have been getting much attention in the machine learning world. These models excel at understanding semantic relationships, and they have contributed to large improvements in Microsoft Bing’s search experience. However, these models can fail to capture more nuanced relationships between query and document terms beyond pure semantics.

The Microsoft team of researchers developed a neural network with 135 billion parameters, which is the largest “universal” artificial intelligence that they have running in production. The large number of parameters makes this one of the most sophisticated AI models ever detailed publicly to date. OpenAI’s GPT-3 natural language processing model has 175 billion parameters and remains as the world’s largest neural network built to date.

Microsoft researchers are calling their latest AI project MEB (Make Every Feature Binary). The 135-billion parameter machine is built to analyze queries that Bing users enter. It then helps identify the most relevant pages from around the web with a set of other machine learning algorithms included in its functionality, and without performing tasks entirely on its own.

Continue reading “Microsoft AI Researchers Introduce A Neural Network With 135 Billion Parameters And Deployed It On Bing To Improve Search Results” »

Aug 5, 2021

Embodied AI, superintelligence and the master algorithm

Posted by in categories: information science, robotics/AI


In the next year and a half, we’re going to see increasing adoption of technologies, which will trigger a broader industry shift, much as Tesla triggered the transition to EVs.

Continue reading “Embodied AI, superintelligence and the master algorithm” »

Aug 4, 2021

Machine Learning Approach for Predicting Risk of Schizophrenia Using a Blood Test

Posted by in categories: biotech/medical, genetics, information science, robotics/AI

Summary: Blood tests revealed specific epigenetic biomarkers for schizophrenia. Researchers applied machine learning to analyze the CoRSIVs region of the human genome to identify the schizophrenia biomarkers. Testing the model with an independent data set revealed the AI technology can detect schizophrenia with 80% accuracy.

Source: Baylor College of Medicine.

An innovative strategy that analyzes a region of the genome offers the possibility of early diagnosis of schizophrenia, reports a team led by researchers at Baylor College of Medicine. The strategy applied a machine learning algorithm called SPLS-DA to analyze specific regions of the human genome called CoRSIVs, hoping to reveal epigenetic markers for the condition.

Aug 1, 2021

DeepMind’s Vibrant New Virtual World Trains Flexible AI With Endless Play

Posted by in categories: information science, robotics/AI, transportation

The paper’s authors said they’ve created an endlessly challenging virtual playground for AI. The world, called XLand, is a vibrant video game managed by an AI overlord and populated by algorithms that must learn the skills to navigate it.

The game-managing AI keeps an eye on what the game-playing algorithms are learning and automatically generates new worlds, games, and tasks to continuously confront them with new experiences.

Continue reading “DeepMind’s Vibrant New Virtual World Trains Flexible AI With Endless Play” »

Jul 31, 2021

Facebook AI Open-Sources ‘Droidlet’, A Platform For Building Robots With Natural Language Processing And Computer Vision To Understand The World Around Them

Posted by in categories: information science, robotics/AI

Robots today have been programmed to vacuum the floor or perform a preset dance, but there is still much work to be done before they can achieve their full potential. This mainly has something to do with how robots are unable to recognize what is in their environment at a deep level and therefore cannot function properly without being told all of these details by humans. For instance, while it may seem like backup programming for when bumping into an object that would help prevent unwanted collisions from happening again, this idea isn’t actually based on understanding anything about chairs because the robot doesn’t know exactly what one is!

Facebook AI team just released Droidlet, a new platform that makes it easier for anyone to build their smart robot. It’s an open-source project explicitly designed with hobbyists and researchers in mind so you can quickly prototype your AI algorithms without having to spend countless hours coding everything from scratch.

Droidlet is a platform for building embodied agents capable of recognizing, reacting to, and navigating the world. It simplifies integrating all kinds of state-of-the-art machine learning algorithms in these systems so that users can prototype new ideas faster than ever before!

Continue reading “Facebook AI Open-Sources ‘Droidlet’, A Platform For Building Robots With Natural Language Processing And Computer Vision To Understand The World Around Them” »

Jul 31, 2021

DeepMind AI predicts 350,000 protein structures

Posted by in categories: bioengineering, biotech/medical, information science, robotics/AI

DeepMind CEO and co-founder. “We believe this work represents the most significant contribution AI has made to advancing the state of scientific knowledge to date. And I think it’s a great illustration and example of the kind of benefits AI can bring to society. We’re just so excited to see what the community is going to do with this.” https://www.futuretimeline.net/images/socialmedia/

AlphaFold is an artificial intelligence (AI) program that uses deep learning to predict the 3D structure of proteins. Developed by DeepMind, a London-based subsidiary of Google, it made headlines in November 2020 when competing in the Critical Assessment of Structure Prediction (CASP). This worldwide challenge is held every two years by the scientific community and is the most well-known protein modelling benchmark. Participants must “blindly” predict the 3D structures of different proteins, and their computational methods are subsequently compared with real-world laboratory results.

Continue reading “DeepMind AI predicts 350,000 protein structures” »

Jul 30, 2021

This Robot Taught Itself to Run, Then Proceeded to Knock Out a 5K

Posted by in categories: information science, robotics/AI

Granted, it’s a little different for a robot, since they don’t have lungs or a heart. But they do have a “brain” (software), “muscles” (hardware), and “fuel” (a battery), and these all had to work together for Cassie to be able to run.

The brunt of the work fell to the brain—in this case, a machine learning algorithm developed by students at Oregon State University’s Dynamic Robotics Laboratory. Specifically, they used deep reinforcement learning, a method that mimics the way humans learn from experience by using a trial-and-error process guided by feedback and rewards. Over many repetitions, the algorithm uses this process to learn how to accomplish a set task. In this case, since it was trying to learn to run, it may have tried moving the robot’s legs varying distances or at distinct angles while keeping it upright.

Continue reading “This Robot Taught Itself to Run, Then Proceeded to Knock Out a 5K” »

Jul 29, 2021

Machine-learning technique used to pinpoint quantum errors

Posted by in categories: information science, quantum physics, robotics/AI

Researchers at the University of Sydney and quantum control startup Q-CTRL today announced a way to identify sources of error in quantum computers through machine learning, providing hardware developers the ability to pinpoint performance degradation with unprecedented accuracy and accelerate paths to useful quantum computers.

A joint scientific paper detailing the research, titled “Quantum Oscillator Noise Spectroscopy via Displaced Cat States,” has been published in the Physical Review Letters, the world’s premier physical science research journal and flagship publication of the American Physical Society (APS Physics).

Focused on reducing errors caused by environmental “noise”—the Achilles’ heel of —the University of Sydney team developed a technique to detect the tiniest deviations from the precise conditions needed to execute quantum algorithms using trapped ion and superconducting quantum computing hardware. These are the core technologies used by world-leading industrial quantum computing efforts at IBM, Google, Honeywell, IonQ, and others.

Jul 28, 2021

Berkeley Lab’s CAMERA leads international effort on autonomous scientific discoveries

Posted by in categories: information science, mathematics, robotics/AI

Experimental facilities around the globe are facing a challenge: their instruments are becoming increasingly powerful, leading to a steady increase in the volume and complexity of the scientific data they collect. At the same time, these tools demand new, advanced algorithms to take advantage of these capabilities and enable ever-more intricate scientific questions to be asked—and answered. For example, the ALS-U project to upgrade the Advanced Light Source facility at Lawrence Berkeley National Laboratory (Berkeley Lab) will result in 100 times brighter soft X-ray light and feature superfast detectors that will lead to a vast increase in data-collection rates.

To make full use of modern instruments and facilities, researchers need new ways to decrease the amount of data required for and address data acquisition rates humans can no longer keep pace with. A promising route lies in an emerging field known as autonomous discovery, where algorithms learn from a comparatively little amount of input data and decide themselves on the next steps to take, allowing multi-dimensional parameter spaces to be explored more quickly, efficiently, and with minimal human intervention.

“More and more experimental fields are taking advantage of this new optimal and autonomous data acquisition because, when it comes down to it, it’s always about approximating some function, given noisy data,” said Marcus Noack, a research scientist in the Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Berkeley Lab and lead author on a new paper on Gaussian processes for autonomous data acquisition published July 28 in Nature Reviews Physics. The paper is the culmination of a multi-year, multinational effort led by CAMERA to introduce innovative autonomous discovery techniques across a broad scientific community.

Page 6 of 157First345678910Last