Toggle light / dark theme

During the Cold War, there was a need for a new reconnaissance aircraft that could evade enemy radar, and the customer needed it fast. At Lockheed Martin’s advanced development group, the Skunk Works, work had already begun on an innovative aircraft to improve intelligence-gathering, one that would fly faster than any aircraft before or since, at greater altitude, and with a minimal radar cross section. The team rose to the nearly impossible challenge, and the aircraft took its first flight on Dec. 22, 1964. The legendary SR-71 Blackbird was born.

The first Blackbird accident that occurred that required the Pilot and the RSO to eject happened before the SR-71 was turned over to the Air Force. On Jan. 25, 1966 Lockheed test pilots Bill Weaver and Jim Zwayer were flying SR-71 Blackbird #952 at Mach 3.2, at 78,800 feet when a serious engine unstart and the subsequent “instantaneous loss of engine thrust” occurred.

The following story told by Weaver (available in Col. Richard H. Graham’s book SR-71 The Complete Illustrated History of THE BLACKBIRD The World’s Highest 0, Fastest Plane) is priceless in conveying the experience of departing a Blackbird at an altitude of fifteen miles and speed of Mach 3.2.

Researchers from Japan design a tunable physical reservoir device based on dielectric relaxation at an electrode-ionic liquid interface.

In the near future, more and more artificial intelligence processing will need to take place on the edge — close to the user and where the data is collected rather than on a distant computer server. This will require high-speed data processing with low power consumption. Physical reservoir computing is an attractive platform for this purpose, and a new breakthrough from scientists in Japan just made this much more flexible and practical.

Physical reservoir computing (PRC), which relies on the transient response of physical systems, is an attractive machine learning framework that can perform high-speed processing of time-series signals at low power. However, PRC systems have low tunability, limiting the signals it can process. Now, researchers from Japan present ionic liquids as an easily tunable physical reservoir device that can be optimized to process signals over a broad range of timescales by simply changing their viscosity.

Supplementing your diet with the sea organisms Ascidiacea, also known as sea squirts, reverses some of the main signs of aging, according to a new study using an animal model.

While the Fountain of Youth, the mythical spring that restores youth to anyone who bathes in it or drinks its waters, is clearly fantasy, scientists are hard at work looking for ways to combat aging. Some of these scientists just had a breakthrough: they discovered that supplementing a diet with sea squirts, reverses some of the main signs of aging. While more research is needed to verify the effect in humans, as the study was conducted using mice, the findings are very promising.

If you’ve ever glanced in the mirror and seen greying hair and wrinkles, or if you’ve forgotten the name of a close friend, you may desire a medication that might halt or even reverse the effects of aging.

When a donor organ becomes available to someone in need of a transplant, medical personnel need to act quickly. It only takes a few hours for expanding ice crystals to damage delicate tissue, leaving a window of less than 12 hours to assess, transport, and implant the new organ.

This not only creates a tremendous time crunch to perform a delicate procedure, but leaves many organs unviable for transplantation.

But a new breakthrough could vastly improve the landscape of liver transplantation: Scientists kept a liver preserved for three days, in non-frozen conditions, before transplanting it into a patient.