Researchers from Sweden’s Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.
Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and expensive that it only exists in a few locations worldwide.
Modern high-powered lasers offer the potential to reduce the equipment’s size and cost, since they can accelerate particles over a much shorter distance than traditional accelerators — reducing the distance required from kilometres to metres. The problem is, despite efforts from researchers around the world, laser generated proton beams are currently not energetic enough. But now, the Swedish researchers present a new method which yields a doubling of the energy — a major leap forward.
Continue reading “Colliding lasers double the energy of proton beams” »