SCIENTISTS have made a major breakthrough which they hope could lead to a cure to HIV and AIDS.
Scientists have long known that synthetic materials—called metamaterials—can manipulate electromagnetic waves such as visible light to make them behave in ways that cannot be found in nature. That has led to breakthroughs such as super-high resolution imaging. Now, UMass Lowell is part of a research team that is taking the technology of manipulating light in a new direction.
According to Nature, researchers at the University of Brisbane may have developed a simple test that’s able to detect the early stages of cancer.
Not only that but the method is inexpensive, takes a mere 10 minutes, and works for all types of cancer — and the central component used for identifying cancer cells is gold particles.
An initiative called Breakthrough Starshot wants to explore another star system using ultra-powerful laser beams and wafer-thin spaceships.
It’s a goal that sounds so fantastic, you’d be forgiven for dismissing it as science fiction. But it’s no joke, and the project’s chief engineer says millions of dollars’ worth of work is moving along without any major snags.
Starshot’s founders and collaborators include the late Stephen Hawking, Harvard University astronomer Avi Loeb, and Russian-American billionaire Yuri Milner. The concept is based on more than 80 scientific studies about interstellar travel.
Seneca Valley virus sounds like the last bug you’d want to catch, but it could be the next breakthrough cancer therapy. Now, scientists at the Okinawa Institute of Science and Technology (OIST) and the University of Otago have described exactly how the virus interacts with tumors—and why it leaves healthy tissues alone.
The study, published in the Proceedings of the National Academy of Sciences on October 29, 2018, provides the first detailed images of how the complex Seneca Valley virus forms with its preferred receptor. The researchers used cryo-electron microscopy to capture images of over 7000 particles and rendered the structure in high resolution. They predict their results will help scientists develop the virus, and other viral drug candidates, for clinical use.
“If you have a virus that targets cancer cells and nothing else, that’s the ultimate cancer fighting tool,” said Prof. Matthias Wolf, principal investigator of the Molecular Cryo-Electron Microscopy Unit at OIST and co-senior author of the study. “I expect this study will lead to efforts to design viruses for cancer therapy.”
The idea of a cancer vaccine is something researchers have been working on for over 50 years, but until recently they were never able to prove exactly how such a vaccine would work.
Now, a team of researchers at the Institute for Research in Immunology and Cancer (IRIC) at Université de Montréal has demonstrated that a vaccine can work. Not only that, it could become an extremely effective, non-invasive and cost-effective cancer-fighting tool.
The team’s work was published yesterday in Science Translational Medicine.