Toggle light / dark theme

MIT’s “stealth” immune cells could change cancer treatment forever

Engineered “stealth” immune cells from MIT and Harvard show promise for fast, safe, and powerful cancer treatment. Scientists have created a new and more advanced form of immune-based cancer therapy using engineered cells known as CAR-NK (natural killer) cells. Like CAR-T cells, these modified immune cells can be programmed to recognize and attack cancer, but they rely on a different type of immune cell that naturally targets abnormal or infected cells.

A team from MIT and Harvard Medical School has now developed a more effective way to engineer CAR-NK cells that dramatically reduces the chance of the body’s immune system rejecting them. Immune rejection has been one of the biggest limitations of cell-based therapies, often weakening their effectiveness.

This innovation could also make it possible to produce “off-the-shelf” CAR-NK treatments that are available immediately after diagnosis, rather than waiting weeks for custom-engineered cells. Traditional CAR-NK and CAR-T manufacturing methods typically require several weeks to complete before patients can begin treatment.

Next-gen coil interface for non-contact peripheral nerve stimulation could improve treatment for chronic pain

A research team has successfully developed a next-generation coil interface capable of efficiently and safely stimulating peripheral nerves. This breakthrough is significant in that it greatly enhances the efficiency and feasibility of non-contact nerve stimulation technology, enabling stimulation through magnetic fields without the need for direct contact between electrodes and nerves.

The findings are published in the journal IEEE Transactions on Neural Systems and Rehabilitation Engineering. The team was led by Professor Sanghoon Lee from the Department of Robotics and Mechatronics Engineering at DGIST.

In recent years, there has been a growing demand for non-invasive (non-surgical, non-contact) approaches to treat peripheral nerve dysfunctions such as chronic pain, , , and facial nerve paralysis.

AI model could boost robot intelligence via object recognition

Stanford researchers have developed an innovative computer vision model that recognizes the real-world functions of objects, potentially allowing autonomous robots to select and use tools more effectively.

In the field of AI known as computer vision, researchers have successfully trained models that can identify objects in . It is a skill critical to a future of robots able to navigate the world autonomously. But is only a first step. AI also must understand the function of the parts of an object—to know a spout from a handle, or the blade of a bread knife from that of a butter knife.

Computer vision experts call such utility overlaps “functional correspondence.” It is one of the most difficult challenges in computer vision. But now, in a paper that will be presented at the International Conference on Computer Vision (ICCV 2025), Stanford scholars will debut a new AI model that can not only recognize various parts of an object and discern their real-world purposes but also map those at pixel-by-pixel granularity between objects.

A Novel Cancer Treatment Reprograms Cell Death and Triggers Robust Immunity

Cancer is classified as the uncontrollable growth of mutated cells. There are different types of cancers that correlate to various tissues and organs. When individuals hear “cancer” they tend to think of breast cancer or another type of solid tumor. While about 90% of new cancer diagnoses are solid tumors, the remaining 10% are hematologic or blood cancers. Hematological malignancies affect the blood, bone marrow, and lymph nodes. Specific blood cancers include leukemia, lymphoma (Hodgkin’s and non-Hodgkin’s), and multiple myeloma. Around the world, these cancers account for about 7% of all cancer-related deaths, with a projection to increase to about 4.6 million cases in 2030.

Symptoms for hematological malignancies can vary and present in a wide range. Most common symptoms include fatigue, fever, weight loss, bruising, bleeding easily, anemia, low platelet count, and low white blood count. Many patients will also feel bone pain and muscle weakness accompanied by headaches and seizures. Current standard-of-care therapy include chemotherapy combined with another form of treatment. Dependent on the patient and the stage of the cancer, physicians can prescribe targeted therapies, immunotherapies, and stem cell transplants. However, some cancers find ways to resist therapy and continue to progress. Currently, many scientists are working to overcome barriers and improve therapy for patients with hematological malignancies.

A recent article in Science Advances, by Dr. Philippe Bousso and others, demonstrated that an immunotherapy can elicit a strong antitumor response by reprogramming malignant immune cells in lymphomas and leukemias. Bousso is an immunologist and head of the Dynamics of Immune Responses Unit at the Pasteur Institute in France. His work focuses on understanding immune responses in different diseases using innovative imaging approaches. Importantly, his work has helped the field of immunology redefine immune cell functions and showed how proteins secreted by immune cells can have an effect in distal locations throughout the body.

Breakthrough: Scientists Create ‘Universal’ Kidney To Match Any Blood Type

After a decade of work, researchers are closer than ever to a key breakthrough in kidney organ transplants: being able to transfer kidneys from donors with different blood types than the recipients, which could significantly speed up waiting times and save lives.

A team from institutions across Canada and China has managed to create a ‘universal’ kidney, which can, in theory, be accepted by any patient.

Their test organ survived and functioned for several days in the body of a brain-dead recipient, whose family consented to the research.

Back to the future: Is light-speed analog computing on the horizon?

Scientists have achieved a breakthrough in analog computing, developing a programmable electronic circuit that harnesses the properties of high-frequency electromagnetic waves to perform complex parallel processing at light-speed.

The discovery points to a new era of computing that operates far beyond the limits of conventional digital electronics, using less energy, while performing massive calculations.

The study, “Programmable circuits for analog matrix computations,” has been published in Nature Communications.

/* */