Toggle light / dark theme

3D Printed Model Roller Coaster Accurately Simulates The Real Thing

While they don’t give the physical thrill of a real one, model roller coasters are always fun to watch. However, they actually make a poor analog of a full-sized ride, as gravitational force and aerodynamic drag don’t scale down in the same way, model roller coasters usually move way faster than the same design would in the real world. [Jon Mendenhall] fixed this deficiency by designing a model roller coaster that accurately simulates a full-sized ride.

The track and cart are all made of 3D printed pieces, which altogether took about 400 hours to print. The main trick to the system’s unique motion is that the cart is motorized: a brushless DC motor moves it along the track using a rack-and-pinion system. This means that technically this model isn’t a roller coaster, since the cart never makes a gravity-powered drop; it’s actually a small rack railway, powered by a lithium-ion battery carried on board the cart. An ESP32 drives the motor, receiving its commands through WiFi, while the complete setup is controlled by a Raspberry Pi that runs the cart through a predetermined sequence.

The design of the track was inspired by the Fury 325 roller coaster and simulated in NoLimits 2. [Jon] wrote his own software to generate all the pieces to be printed based on outputs from the simulator. This included all the track pieces as well as the large A-frames holding it up; some of these were too long to fit in [Jon]’s 3D printers and had to be built from smaller pieces. The physics simulation also provided the inputs to the controller in the form of a script that contains the proper speed and acceleration at each point along the track.

Protecting EV Charging Stations from Cyberattacks

As the number of electric cars on the road grows, so does the need for electric vehicle (EV) charging stations and the Internet-based managing systems within those stations. However, these managing systems face their own issues: cybersecurity attacks.

Elias Bou-Harb, director of the UTSA Cyber Center for Security and Analytics, and his colleagues — Claud Fachkha of the University of Dubai and Tony Nasr, Sadegh Torabi and Chadi Assi of Concordia University in Montreal — are shedding light on the vulnerabilities of these cyber systems. The researchers are also recommending measures that would protect them from harm.

The systems built into electric cars perform critical duties over the Internet, including remote monitoring and customer billing, as do a growing number of internet-enabled EV charging stations.

Free-Space Optical Communication

FSO communication systems are where free space acts as a communication channel between transceivers that are line-of-sight (LOS) for successful transmission of optical signals. The channel can be atmosphere, space, or vacuum, whose characteristics determine the transmission and reception of optical signals for designing reliable and efficient communication systems. Using FSO technology data is transmitted by propagation of light through atmospheric or space communication channels, allowing optical connectivity. FSO communication offers a high data rate to meet the tremendous increasing demand of broadband traffic mostly driven by Internet access and HDTV broadcasting services. Compared to fiber optics technology, FSO offers much more flexibility in designing optical network architectures at very high speeds, at tens and hundreds of Gbit/s rates. However, FSO communication is affected by atmospheric effects, which limits sensitivity and achievable data rates with acceptable BER. Some of these degradations are turbulence, absorption, and scattering, and various mitigation techniques exist for reliable and efficient data transmission [1] and to increase the communication performance. Both point-to-point, point-to-multipoint, multipoint-to-point, and multipoint-to-multipoint FSO communications are possible, depending on the different scenarios of establishing optical links. FSO communication is the most practical alternative to solve the bottleneck broadband connectivity problem. The data rates provided by FSO links continue to increase in both long-and short-range applications. FSO will be one of the most unique and powerful tools to address connectivity bottlenecks that have been created in high-speed networks during the past decade due to the tremendous success and continued acceptance of the Internet. The next generation of Internet connectivity will push the limits of existing infrastructure with high-bandwidth applications such as videoconferencing, streaming multimedia content, and network-enabled portable devices. Clearing these bottlenecks is crucial for the future growth and success of the contemporary Internet society. The bandwidth of optical communications access and edge networks will be needed to satisfy these demands. Communication systems are concerned with the transmission of information from a source to a user. The purpose of a communication system is therefore to transfer information. A very basic block diagram of any communication system (optical or radiofrequency (RF)) is shown in Fig. 4.1.

Fig. 4.1 shows a single point-to-point system, whereas in a multiplexed system there may be multiple input and output message sources and users (also called destinations). Fig. 4.2 shows other possible configurations and links for multipoint connections.

OWC is the next frontier for high-speed broadband connection and offers the following unique features and advantages: high bandwidth/capacity, ease of deployment, compact size, low power, and improved channel security. OWC can transmit and exchange voice and video communication data through the atmosphere/free-space at the rates of tens of Gbit/s and much more.

These Were Our Favorite Tech Stories From Around the Web in 2021

Tech companies continued to draw criticism for their roles in political and social scandals, most notably when whisteblower and former Facebook employee Frances Haugen testified to lawmakers. Undeterred, Facebook rebranded itself Meta and said it would now focus on building the metaverse. Twitter CEO Jack Dorsey stepped down and likewise changed the name of his company Square to Block in a not-so-subtle nod to the blockchain.

Meanwhile, volatile cryptocurrencies set new records, their prices jumping and crashing on a tweet. NFTs, a once-obscure type of cryptoasset, went on an eye-watering tear as redditors pushed meme stocks skyward. It was also the year of ever-bigger AI. Machine learning models surpassed a trillion parameters, designed computer chips, and tackled practical problems in biology, math, and chemistry. Elsewhere, billionaires went to space, regular folks bought 3D printed houses, fusion power attracted billions in investment, gene editing trials hit their stride, and “flying car” companies hit the New York Stock Exchange.

For this year’s list of fascinating stories in tech and science, we sifted our Saturday posts and selected articles that looked back to where it all began, glanced ahead to what’s coming, or otherwise stood out from the chatter to stand the test of time.

What is Elon Musk’s Tesla Bot capable of? | Boston Dynamics News | High Tech News

🤔


👉For business inquiries: [email protected].

✅ Instagram: https://www.instagram.com/pro_robots.
You are on the PRO Robots channel and in this issue we present you with high-tech news. New personal unmanned flying cars on the ground and in the air, details about Elon Musk’s robot, home robot for engineers, Boston Dynamics news and other bright events from the world of high technology in one issue!

0:00 In this video.
0:21 Volar two-seat flying car.
1:10 Tesla Bot.
1:46 Starlink.
2:18 Tesla.
2:55 Mighty delivery robot.
3:38 InnerSpace unmanned concept car.
4:35 Modular robotic arm with artificial intelligence.
5:30 Japan has developed a method that predicts the flight path of insect pests.
5:50 Boston Dynamics.
6:30 Artist Agnieszka Pilat.
7:14 Everdrone.
7:39 Heavy FB3 cargo drones.
8:12 Swifty semi-autonomous robotic system.
8:55 Unmanned tractor 8R
9:33 Electric robot cab without a steering wheel.
10:04 Smart speakers can be dangerous.

#prorobots #robots #robot #futuretechnologies #robotics.

Elon Musk Shares Crucial Starlink Data That Will Enable Big Leap Over Global Broadband

Space Exploration Technologies Corporation’s (SpaceX) ch8ef executive officer Mr. Elon Musk has shared the latest details for his company’s Starlink satellite internet constellation. Starlink is SpaceX’s internet service which uses low Earth orbit (LEO) small satellites to beam down the Internet to its users. Due to a rapid cadence of launches, SpaceX has ensured that Starlink is the world’s largest internet constellation in service, and the company is currently upgrading the satellites with laser based connectivity. This will allow Starlink to expand its coverage and reach areas that cannot be served without ground stations to connect the satellites and the users to internet servers.

Starlink Will Soon Start To Operate Laser Links Between Satellites Confirms Musk

Mr. Musk shared the latest details through his social media platform Twitter, as he outlined the number of Starlink satellites currently in orbit and his company’s plans to activate newer spacecraft capable of optical communication. These are crucial for evaluating the internet service’s current capacity, which has come under fire from rivals in proceedings for spectrum sharing and licensing currently underway at the Federal Communications Commission (FCC).

Elon Musk Wants to Bring You Better In-Flight WiFi

Elon Musk—via Starlink, a division of SpaceX—is in talks with “several” airlines to provide in-flight WiFi for passengers. His plan is to use Starlink’s ever-growing megaconstellation of satellites to equip customers with better WiFi while they fly the friendly skies.

Jonathan Hofeller, SpaceX’s vice president of Starlink and commercial sales, gave out details on the ambitious plan during a panel at the Connected Aviation Intelligence Summit on Wednesday.

Age Expert Answers Aging Questions From Twitter | Tech Support

I’ve posted some vids of her before. But here she says at 3:52 that she thinks stopping the aging process is farfetched.


Dr. Morgan Levine, a professor who specializes in the biology of aging, answers the internet’s burning questions about aging. Is there anyway to stop aging? Is aging a disease? Do you age slower in space? Dr. Levine answers all these questions and much more!

Still haven’t subscribed to WIRED on YouTube? ►► http://wrd.cm/15fP7B7
Listen to the Get WIRED podcast ►► https://link.chtbl.com/wired-ytc-desc.
Want more WIRED? Get the magazine ►► https://subscribe.wired.com/subscribe/splits/wired/WIR_YouTu…ription_ZZ

Follow WIRED:

Instagram ►►https://instagram.com/wired.

Chipmakers are set to be ‘winners’ as the metaverse takes off

The metaverse, which requires a massive amount of computing power, is set to benefit global chipmakers— but other tech-related industries could also gain from it, analysts say.

Widely seen as the next generation of the internet, the metaverse refers broadly to a virtual world where humans interact through three-dimensional avatars that can be controlled via virtual reality headsets like Oculus.

Through the metaverse, users can engage in virtual activities such as gaming, virtual concerts or live sports.