БЛОГ

Archive for the ‘internet’ category: Page 217

Dec 29, 2019

Inside The Cryptocurrency Revolution | VICE on HBO

Posted by in categories: bitcoin, business, cryptocurrencies, internet

Bitcoin’s emergence as a global digital currency has been as revolutionary as it has been erratic. But while fledgling investors obsess over every fluctuation in the cryptocurrency market, nation-states are more interested in the underlying blockchain technology and its ability to revolutionize how business is done on the internet and beyond. VICE’s Michael Moynihan travels to Russia with Vitalik Buterin, inventor of the ethereum blockchain, to get a front-row seat to the geopolitical tug of war over Internet 3.0.

Check out VICE News for more: http://vicenews.com

Continue reading “Inside The Cryptocurrency Revolution | VICE on HBO” »

Dec 28, 2019

Researchers Teleport Information Between Two Computer Chips for the First Time

Posted by in categories: computing, internet, nanotechnology, particle physics, quantum physics

For the first time, researchers and scientists from the University of Bristol, in collaboration with the Technical University of Denmark (DTU), have achieved quantum teleportation between two computer chips. The team successfully developed chip-scale devices that are able to harness the applications of quantum physics by generating and manipulating single particles of light within programmable nano-scale circuits.

Unlike regular or science fiction teleportation which transfer particles from one place to another, with quantum teleportation, nothing physical is being transported. Rather, the information necessary to prepare a target system in the same quantum state as the source system is transmitted from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location.

In a feat that opens the door for quantum computers and quantum internet, the team managed to send information from one chip to another instantly without them being physically or electronically connected. Their work, published in the journal Nature Physics, contains a range of other quantum demonstrations. This chip-to-chip quantum teleportation was made possible by a phenomenon called quantum entanglement. The entanglement happens between two photons (two light particles) with the interaction taking place for a brief moment and the two photons sharing physical states. Quantum entanglement phenomenon is so strange that physicist Albert Einstein famously described it as ‘spooky action at a distance’.

Dec 27, 2019

Information teleported between two computer chips for the first time

Posted by in categories: computing, internet, particle physics, quantum physics

Scientists at the University of Bristol and the Technical University of Denmark have achieved quantum teleportation between two computer chips for the first time. The team managed to send information from one chip to another instantly without them being physically or electronically connected, in a feat that opens the door for quantum computers and quantum internet.

This kind of teleportation is made possible by a phenomenon called quantum entanglement, where two particles become so entwined with each other that they can “communicate” over long distances. Changing the properties of one particle will cause the other to instantly change too, no matter how much space separates the two of them. In essence, information is being teleported between them.

Hypothetically, there’s no limit to the distance over which quantum teleportation can operate – and that raises some strange implications that puzzled even Einstein himself. Our current understanding of physics says that nothing can travel faster than the speed of light, and yet, with quantum teleportation, information appears to break that speed limit. Einstein dubbed it “spooky action at a distance.”

Dec 25, 2019

The ‘Quantum Computing’ Decade Is Coming—Here’s Why You Should Care

Posted by in categories: computing, encryption, internet, mathematics, quantum physics

The ability to process qubits is what allows a quantum computer to perform functions a binary computer simply cannot, like computations involving 500-digit numbers. To do so quickly and on demand might allow for highly efficient traffic flow. It could also render current encryption keys mere speedbumps for a computer able to replicate them in an instant. #QuantumComputing


Multiply 1,048,589 by 1,048,601, and you’ll get 1,099,551,473,989. Does this blow your mind? It should, maybe! That 13-digit prime number is the largest-ever prime number to be factored by a quantum computer, one of a series of quantum computing-related breakthroughs (or at least claimed breakthroughs) achieved over the last few months of the decade.

An IBM computer factored this very large prime number about two months after Google announced that it had achieved “quantum supremacy”—a clunky term for the claim, disputed by its rivals including IBM as well as others, that Google has a quantum machine that performed some math normal computers simply cannot.

Continue reading “The ‘Quantum Computing’ Decade Is Coming—Here’s Why You Should Care” »

Dec 24, 2019

Research on Application of Artificial Intelligence in Computer Network Technology

Posted by in categories: information science, internet, robotics/AI

This paper attempts to apply artificial intelligence (AI) to computer network technology and research on the application of AI in computing network technology.

With the continuous expansion of the application scope of computer network technology, various malicious attacks that exist in the Internet range have caused serious harm to computer users and network resources.

By studying the attack principle, analyzing the characteristics of the attack method, extracting feature data, establishing feature sets, and using the agent technology as the supporting technology, the simulation experiment is used to prove the improvement effect of the system in terms of false alarm rate, convergence speed, and false-negative rate, the rate reached 86.7%. The results show that this fast algorithm reduces the training time of the network, reduces the network size, improves the classification performance, and improves the intrusion detection rate.

Dec 24, 2019

First chip-to-chip quantum teleportation harnessing silicon photonic chip fabrication

Posted by in categories: internet, particle physics, quantum physics, supercomputing

The development of technologies which can process information based on the laws of quantum physics are predicted to have profound impacts on modern society.

For example, quantum computers may hold the key to solving problems that are too complex for today’s most powerful supercomputers, and a quantum internet could ultimately protect the worlds information from malicious attacks.

However, these technologies all rely on “,” which is typically encoded in single quantum particles that are extremely difficult to control and measure.

Dec 24, 2019

Russia ‘successfully tests’ its unplugged internet

Posted by in category: internet

Russia’s alternative to the global internet would cut its citizens off from some foreign services.

Dec 23, 2019

We’re letting China win the 5G race. It’s time to catch up

Posted by in category: internet

This new “digital highway” centered on 5G will give rise to new industries and services previously unimagined. The United States must redouble its efforts to build such a digital infrastructure and make the commercialization of the Internet of Things a reality.


We’re on the verge of another industrial revolution. We can’t let the U.S. miss out.

Dec 22, 2019

Would you want immortal life as a cyborg?

Posted by in categories: cyborgs, internet, life extension, transhumanism

Transhumanism can mean uploading one’s mind into cyberspace. But some transhumanists hope to slowly morph into “immortal cyborgs” with endlessly replaceable parts.

Five years ago, we were told, we were all turning into cyborgs:

Did you recently welcome a child into the world? Congratulations! An upstanding responsible parent such as yourself is surely doing all you can to prepare your little one for all the pitfalls life has in store. However, thanks to technology, children born in 2014 may face a far different set of issues than you ever had to. And we’re not talking about simply learning to master a new generation of digital doohickeys, we’re talking about living in a world in which the very definition of “human” becomes blurred.

Dec 16, 2019

How to use entanglement for long-distance or free-space quantum communication

Posted by in categories: encryption, internet, quantum physics

Entanglement, once called “spooky action at a distance” by Einstein, is the phenomenon in which the quantum states of separated particles cannot be described independently. This puzzling phenomenon is widely exploited in the quantum physicist’s toolbox, and is a key resource for applications in secure quantum communication over long distances and quantum cryptography protocols. Unfortunately, entangled particles are easily disturbed by their surroundings, and their entanglement is readily diminished by the slightest interaction with the environment.

In a recent study published in the journal Physical Review X, an international team of physicists from Austria, Scotland, Canada, Finland and Germany have demonstrated how quantum can be strengthened to overcome particle loss or very high levels of noise, which are inevitable in real-life applications outside the laboratory. This strengthening is accomplished by departing from commonly used two-level quantum bits, or qubits. Qubits are bi-dimensional systems, the quantum analogue to the classical bit, with values zero or one. In this study, the researchers instead employed entanglement of systems with more than two levels. By entangling particles of light through their spatial and temporal properties, scientists have now observed the survival of quantum entanglement under harsh environmental conditions for the first time.

When it comes to distributing particles of light outside of a protected laboratory, the environmental conditions are identical to the tested ones. Therefore, the experiment is not only a proof-of-principle implementation, but is ready for long-distance quantum communication under real-world conditions. This new method could hence prove helpful for distributing entanglement in a future quantum internet.