БЛОГ

Archive for the ‘life extension’ category: Page 160

Sep 18, 2022

Human longevity trials and aging with Dr Brian Kennedy

Posted by in categories: biotech/medical, life extension

Dr Brian Kennedy on Rejuvant, human longevity trials, aging optimally and why individual response to intervention is key.

Alpha-ketoglutarate (AKG) is used by cells during growth and in healing from injuries; studies have shown it may be effective in treating osteoporosis, preventing a decline in protein synthesis, reducing frailty and, in some mammalian studies; even extending lifespan. has gone one step further, adding calcium to produce LifeAKG™, a patent-pending, highly bioavailable and ultra pure CaAKG supplement, backed by extensive research and double-blind placebo-controlled clinical trials.

Continue reading “Human longevity trials and aging with Dr Brian Kennedy” »

Sep 17, 2022

Ray Kurzweil: Singularity, Superintelligence, and Immortality | Lex Fridman Podcast #321

Posted by in categories: existential risks, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity, virtual reality

New Kurzweil Vid!, September 17, 2022!


Ray Kurzweil is an author, inventor, and futurist. Please support this podcast by checking out our sponsors:
- Shopify: https://shopify.com/lex to get 14-day free trial.
- NetSuite: http://netsuite.com/lex to get free product tour.
- Linode: https://linode.com/lex to get $100 free credit.
- MasterClass: https://masterclass.com/lex to get 15% off.
- Indeed: https://indeed.com/lex to get $75 credit.

Continue reading “Ray Kurzweil: Singularity, Superintelligence, and Immortality | Lex Fridman Podcast #321” »

Sep 16, 2022

Manipulation of immune system via immortal bone marrow stem cells

Posted by in categories: biotech/medical, genetics, life extension

Circa 2008 face_with_colon_three


Adult bone marrow (BM) houses a tiny pool of hematopoietic stem cells (HSCs) that have the ability to maintain not only themselves but also all the rest of highly turning over blood lineages throughout the mammalian life (1, 2). Hence, the ability to sustain HSC in tissue culture would allow serial introduction of gain or loss of function mutations efficiently in hematopoietic system. However, our failure to expand HSC in culture has hampered the use of this approach. In fact, BM suspension cultures lose rapidly their HSC content despite vigorous growth of progenitors and more differentiated cells at least for 3 weeks even in optimal cytokine milieu (3, 4). Therefore, the phenomenon of stem cell exhaustion or senescence may set the limits that make it impossible even in principle to expand HSC in culture for longer periods (5–7).

Mouse HSC do expand in vivo (8, 9), at least up to 8000-fold, as shown by Iscove and Nawa (9) through serial transplantation experiments that assessed carefully the input and output contents of HSC in each transfer generation. Recently also in vitro approaches have been improved and refined culture conditions with new growth factors can now support up to 30-fold expansion of mouse HSC ex vivo (10). However, since it is not clear to what extent external culture conditions can be improved, alternative but not mutually exclusive efforts to change the intrinsic properties of HSC have been taken. Seminal experiments in this respect by Humphries, Savageau and their colleagues have shown that ectopic expression of HOXB4 transcription factor in BM cells support the survival and expansion of HSC in vivo and importantly also in vitro (11–13). By rigorously monitoring the HSC content in their cultures of HOXB4-transduced BM cells, they found that HSC could be expanded up to 41-fold in the 2-week liquid cultures (13). HOXB4 belongs to a large family of HOX transcription factors that are crucial for the basic developmental processes in addition to their role in maintenance of different stem cell compartments.

Continue reading “Manipulation of immune system via immortal bone marrow stem cells” »

Sep 16, 2022

Scientists studied naked mole rats to avoid aging and cancer

Posted by in categories: biotech/medical, life extension

A study on naked mole rats could help scientists prevent and better treat human illnesses.

According to new research conducted by University of Cambridge scientists, naked mole rats age healthily, very rarely get cancer, and are numb to acid.

The team hopes to utilize these insights to find better treatment methods for human illnesses and inflammatory conditions such as arthritis, according to an institutional press release.

Sep 16, 2022

2 Minutes to Midlife: The Fantastic Unspecified Future of Epigenetic Clocks

Posted by in categories: biotech/medical, genetics, life extension

With billions of dollars flooding into longevity, what role will epigenetic clocks play in measuring and intervening in aging?

When Horvath first described epigenetic clocks, scientists began to speculate that altering them could reverse aging. After all, if certain patterns of DNA methylation at certain sites in cells in certain tissues of your body are hallmarks of aging, could shifting them somehow reverse aging?

Sep 15, 2022

DNA clocks suggest ageing is pre-programmed in our cells

Posted by in categories: biotech/medical, life extension

Looking at DNA in a tissue sample is now all you need to accurately work out the age of almost any mammal, and this reveals something fundamental about ageing.

Sep 15, 2022

Unlocking the power of cell-derived medicines with Dr Alex Schueller, Cellvie’s CEO

Posted by in categories: biotech/medical, evolution, life extension

The biotech platform that is leveraging one of the cornerstones of evolution – mitochondria.

Mitochondria play a crucial role in the aging process, activating factors and metabolic pathways involved in longevity. Their dysfunction impacts on both lifespan and healthspan, and whilst they have been identified as disease targets for some time, mitochondria have proven difficult to treat.

Continue reading “Unlocking the power of cell-derived medicines with Dr Alex Schueller, Cellvie’s CEO” »

Sep 15, 2022

Can we live longer? Physicist makes discovery about telomeres

Posted by in categories: biotech/medical, life extension

With the aid of physics and a minuscule magnet, researchers have discovered a new structure of telomeric DNA. Telomeres are sometimes seen as the key to living longer. They protect genes from damage but get a bit shorter each time a cell divides. If they become too short, the cell dies. The new discovery will help us understand aging and disease.

Physics is not the first scientific discipline that springs to mind at the mention of DNA. But John van Noort from the Leiden Institute of Physics (LION) is one of the scientists who found the new DNA structure. A biophysicist, he uses methods from physics for biological experiments. This also caught the attention of biologists from Nanyan Technological University in Singapore. They asked him to help study the DNA structure of . They have published the results in Nature.

Sep 15, 2022

Pretzel Therapeutics Launches with $72M to Advance Mitochondrial Therapies

Posted by in categories: biotech/medical, genetics, life extension

Biotech start-up Pretzel Therapeutics launched Monday with $72.5 million in Series A financing to develop novel, mitochondria-based therapies for rare genetic disorders and diseases of aging.

Pretzel plans to target mitochondrial diseases, a highly heterogenous group of conditions caused by DNA mutations in the mitochondria or the nucleus. These disorders are very rare, afflicting around one in 5,000 people.

Pretzel CEO Jay Parrish told BioSpace the fundingshould enable us to get close to the clinic if not into the clinic with one or more programs.”

Sep 15, 2022

Aubrey de Grey: scientist who says humans can live for 1,000 years

Posted by in category: life extension

Hugo Cox.

At the end of a winding dirt track off Bear Creek Road, a few miles from Los Gatos in California’s Santa Cruz mountains is the home of Aubrey de Grey, the 53-year-old English research scientist from whom the claim originates. It looks exactly like the place you would expect a mad professor to live.