Toggle light / dark theme

A Week At The Most Secretive Conference On Aging

One of the events hosted by the GRC this year was the conference called ‘Systemic Processes, Omics Approaches, and Biomarkers in Aging.” It was the inaugural Systems Aging Gordon Research Conference. Held in Newry, Maine, this event is not easy to get to. Many of the scientists on the East Coast of the US needed to spend half a day or more just to get there. There is a reason for this. Often, conferences that are organized in large metropolitan areas with easy access do not have the same level of “pressure cooking” and interactive networking just because many senior scientists tend to be distracted and often leave prematurely. But when they are put together in a remote location, it is not easy to leave and they have no choice but to interact with each other, share knowledge, and come up with new ideas and collaborations.

The level and impact of scientific conferences is often evaluated by the number and quality of the sponsors. And the GRC conference on Aging sported a number of high-profile sponsors including GRC itself, Carl Storm International Diversity Fellowship Program, National Institute on Aging, IOMICS Intelligent Analytics, Zymo Research, Kinexum, Insilico Medicine, Illumina, Aging journal, Impetus Grants, Infinita Life Science and VitaDAO.

With Vadim Gladyshev serving as chairman and Steve Horvath as vice-chairman, the conference set the stage for the field, paving the way for the development of interventions to delay and reverse aging. Vadim is a professor of medicine at Harvard Medical School and director of Redox Medicine at Brigham and Women’s Hospital, while Steve is a professor of human genetics and biostatistics at the University of California — Los Angeles, and a senior scientist at Altos Labs. Both are world-renowned researchers, and spoke and led the discussions at the conference.

Ageless Augmented Fasting: Reverse Engineering Biological Immortality

Exclusive interview for ageless partners®: augmented fasting; reverse engineering immortality.

I am so happy and intellectually fulfilled to share the following interview I had with Jason C. Mercurio, MFE about Aging and the conclusions I’ve reached after 12 years of intensive research.

Every single person reading this is suffering from Aging.

Also the tool Aging exacts in terms of human suffering is indescribable.

For society and healthcare systems, just slowing down Aging by a few years would save trillions.

In this interview we discuss the following fascinating subjects:

Human Urine-Derived Stem Cells Have Robust Regenerative Potential

Summary: Stem cells in human urine have the potential to regenerate tissue.

Source: wake forest baptist medical center.

The Wake Forest Institute for Regenerative Medicine (WFIRM) researchers who were the first to identify that stem cells in human urine have potential for tissue regenerative effects, continue their investigation into the power of these cells.

Astronomers spot signs of planets forming around dying stars

Aging binary systems could be giving birth to second-generation planets.


When a Sun-like star exhausts the helium fuel in its core, it enters its death throes. Starved for fuel, it swells to a red giant, likely swallowing its innermost planets, and begins burning scraps of leftover hydrogen to helium. Periodically, these helium ashes reignite, causing the star to once again burn brightly and throw off its outer layers into space.

This volatile phase of stellar life is called the asymptotic giant branch (AGB). With so much happening, it would seem like a terrible environment for the delicate process of forming planets. But over the past couple decades, astronomers have begun to suspect that under some circumstances, this stage could result in a new disk of material surrounding the star, giving rise to a second generation of planets.

Now, an analysis published Feb. 1 in Astronomy and Astrophysics gives some of the first observational hints that dying stars in binary systems could be giving birth to new planets. Roughly 10 percent of the post-AGB stars they studied are surrounded by disks of gas and dust that have gaps and cavities in them, a telltale sign that planets are possibly present — or forming — in them.

Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies

Circa 2020 Immortality of the heart and heart regeneration.


Cardiovascular diseases represent the major cause of morbidity and mortality worldwide. Multiple studies have been conducted so far in order to develop treatments able to prevent the progression of these pathologies. Despite progress made in the last decade, current therapies are still hampered by poor translation into actual clinical applications. The major drawback of such strategies is represented by the limited regenerative capacity of the cardiac tissue. Indeed, after an ischaemic insult, the formation of fibrotic scar takes place, interfering with mechanical and electrical functions of the heart. Hence, the ability of the heart to recover after ischaemic injury depends on several molecular and cellular pathways, and the imbalance between them results into adverse remodeling, culminating in heart failure. In this complex scenario, a new chapter of regenerative medicine has been opened over the past 20 years with the discovery of induced pluripotent stem cells (iPSCs). These cells share the same characteristic of embryonic stem cells (ESCs), but are generated from patient-specific somatic cells, overcoming the ethical limitations related to ESC use and providing an autologous source of human cells. Similarly to ESCs, iPSCs are able to efficiently differentiate into cardiomyocytes (CMs), and thus hold a real regenerative potential for future clinical applications. However, cell-based therapies are subjected to poor grafting and may cause adverse effects in the failing heart. Thus, over the last years, bioengineering technologies focused their attention on the improvement of both survival and functionality of iPSC-derived CMs. The combination of these two fields of study has burst the development of cell-based three-dimensional (3D) structures and organoids which mimic, more realistically, the in vivo cell behavior. Toward the same path, the possibility to directly induce conversion of fibroblasts into CMs has recently emerged as a promising area for in situ cardiac regeneration. In this review we provide an up-to-date overview of the latest advancements in the application of pluripotent stem cells and tissue-engineering for therapeutically relevant cardiac regenerative approaches, aiming to highlight outcomes, limitations and future perspectives for their clinical translation.

Cardiovascular diseases represent the major cause of morbidity and mortality worldwide, accounting for 31% of all deaths (Organization WH 2016). Myocardial infarction (MI) is associated with necrosis of the cardiac tissue due to the occlusion of the coronary arteries, a condition that irrevocably diminishes oxygen and nutrient delivery to the heart (Thygesen et al., 2007). While effective therapies, including surgical approaches, are currently used to treat numerous cardiac disorders, such as valvular or artery diseases, available therapeutic treatments for the damaged myocardium are still very limited and poorly effective. Furthermore, after an ischaemic insult, the formation of fibrotic scar takes place, interfering with mechanical and electrical functions of the cardiac tissue (Talman and Ruskoaho, 2016).

Mitochondrial uncoupling attenuates sarcopenic obesity

Mitochondrial uncoupling by agents such as BAM15 may mitigate age-related decline in muscle mass and function by molecular and cellular bioenergetic adaptations that confer protection against sarcopenic obesity.


Background Sarcopenic obesity is a highly prevalent disease with poor survival and ineffective medical interventions. Mitochondrial dysfunction is purported to be central in the pathogenesis of sarcopenic obesity by impairing both organelle biogenesis and quality control. We have previously identified that a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 is orally available and selectively lowers respiratory coupling efficiency and protects against diet-induced obesity in mice. Here, we tested the hypothesis that mitochondrial uncoupling simultaneously attenuates loss of muscle function and weight gain in a mouse model of sarcopenic obesity.

Regenerative potential of induced pluripotent stem cells derived from patients undergoing haemodialysis in kidney regeneration

Circa 2018 immortality of the kidneys.


Kidney regeneration from pluripotent stem cells is receiving a lot of attention because limited treatments are currently available for chronic kidney disease (CKD). It has been shown that uremic state in CKD is toxic to somatic stem/progenitor cells, such as endothelial progenitor and mesenchymal stem cells, affecting their differentiation and angiogenic potential. Recent studies reported that specific abnormalities caused by the non-inherited disease are often retained in induced pluripotent stem cell (iPSC)-derived products obtained from patients. Thus, it is indispensable to first assess whether iPSCs derived from patients with CKD due to non-inherited disease (CKD-iPSCs) have the ability to generate kidneys.

Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats

Circa 2021 First breakthrough in immortality of the eyes of rats using the inducing of pluripotent stem cells in the eye. Which will eventually lead to immortality of the human eye.


The retina is neural tissue located in the posterior part of the eye and is an extension of the central nervous system (CNS), which has limited regenerative potential once damaged1. Therefore, to maintain homeostasis of the retinal microenvironment and protect itself from harmful stimuli, the retina has a unique structure consisting of inner and outer blood-retinal barriers (BRBs)2,3,4. The outer BRB is mainly composed of retinal pigment epithelial (RPE) cells, which support photoreceptor cells, the primary neurons in the retina, and play a significant role in the pathogenesis of retinal degenerative disorders, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP)5,6,7,8,9. These disorders are commonly characterized by the irreversible loss of photoreceptor cells and RPE cells, and the only fundamental treatment for these retinal degenerative disorders is replacement of damaged or atrophied cells10,11,12. Thus, regenerative treatments, such as stem cell transplantation, are emerging as attractive options for targeting retinal degeneration that was previously considered untreatable13.

RP refers to a set of hereditary retinal degenerative disorders that initially involve photoreceptors and leads to subsequent RPE cell damage; it affects 1 in 4,000 individuals worldwide9. Due to its inherent nature, extensive genetic studies are ongoing, and more than 50 causal genes have been identified14. Among the causal genes, PDE6B is a gene that encodes rod cGMP-phosphodiesterase, which is a critical component of the biochemical light transduction pathway9. Although various molecular and genetic studies have identified the pathomechanisms of RP, attempts to restore vision in patients with RP have failed. To overcome this issue, preclinical stem cell-based studies involving transient dosing or permanent implantation of pluripotent stem cells are being conducted10,11,15,16.

Permanent implantation of retinal stem cells is a promising method and is highly expected to be a potential alternative treatment strategy for replacing damaged retinal cells13,16. Sharma et al.17 manufactured clinical-grade AMD patient stem cell-derived RPE cells using RPE patches of a biodegradable scaffold, and functionally validated the effects of their transplantation. This researchers provided a pipeline for the generation of clinical-grade induced pluripotent stem cell (iPSC)-derived RPE cells, and histologically and functionally validated the efficacy of transplantation, thereby significantly advancing the retinal stem cell transplantation field; however, a single RPE cell transplantation cannot rescue already compromised photoreceptor cells and can be only applied in early stages of retinal degenerative diseases, when there are sufficient functional photoreceptor cells.