In Caenorhabditis elegans, ablation of germline stem cells leads to extended lifespan and increased fat storage. Here the authors show that disrupting distinct gametogenesis programs and germline progression in C. elegans triggers molecular responses that affect fat metabolism, stress resilience, and lifespan.
Deep neural networks (DNNs) have become a cornerstone of modern AI technology, driving a thriving field of research in image-related tasks. These systems have found applications in medical diagnosis, automated data processing, computer vision, and various forms of industrial automation, to name a few.
As reliance on AI models grows, so does the need to test them thoroughly using adversarial examples. Simply put, adversarial examples are images that have been strategically modified with noise to trick an AI into making a mistake. Understanding adversarial image generation techniques is essential for identifying vulnerabilities in DNNs and for developing more secure, reliable systems.
They’ve been promising eternal youth since the first snake-oil salesman bottled spring water. Now a Chinese biotech startup says it might actually have the chemistry right. Lonvi Biosciences claims its new pill could stretch human life to 150 years.
The Shenzhen-based company, backed by China’s booming longevity sector, says it has developed a pill that could theoretically extend human life to 150 years. The company’s formula targets so-called “zombie cells”—aging cells that refuse to die, triggering inflammation and age-related disease. “This is not just another pill. This is the Holy Grail,” said CEO Ip Zhu, describing the capsule as a breakthrough that could make extreme longevity a reality.
The drug’s key ingredient, procyanidin C1 (PCC1), is derived from grape seeds and has shown lifespan extension in lab animals. In Lonvi’s own mouse trials, the treatment reportedly increased overall lifespan by 9.4 percent and extended life by 64 percent from the first day of treatment. “Living to 150 is definitely realistic,” said Chief Technology Officer Lyu Qinghua in an interview with The New YorkTimes. “In a few years, this will be the reality.”
Disease course and pathology an infection may cause can change owing to the structural and functional physiological changes that accumulate with age, but therapy can be tailored accordingly; disease tolerance genes show antagonistic pleiotropy.
Researchers at the Icahn School of Medicine at Mount Sinai have characterized how cellular senescence—a biological process in which aging cells change how they function—is associated with human brain structure in both development and late life. The study, published January 22 in Cell, provides new insight into how molecular signatures of cellular senescence that are present during development and aging mirror those associated with brain volume and cortical organization.
Understanding brain structure is a central challenge in neuroscience. Although brain structure changes throughout life and is linked to both aging and neurodegenerative conditions such as Parkinson’s and Alzheimer’s diseases, the underlying molecular processes involved—including cellular senescence—are not defined. Cellular senescence is commonly defined as a state characterized by permanent cell cycle arrest in the absence of cell death, in which cells have altered function. While cellular senescence has been implicated in aging and disease, its role in shaping human brain structure—both during development and aging—has remained unclear.
“This is the first study to directly link senescence-related molecular networks in living human brain tissue to measurable differences in brain structure within the same individuals,” said Noam Beckmann, PhD, Director of Data Sciences and founding member for the Mount Sinai Clinical Intelligence Center, Assistant Professor of Artificial Intelligence and Human Health, and co-senior author of the paper. “By identifying molecular pathways that are engaged in both brain structure development and aging, our work highlights senescence as a fundamental biological feature of brain aging and neurodegenerative disease and helps prioritize targets for future experimental research aimed at protecting brain health.”
Researchers at the Icahn School of Medicine at Mount Sinai have characterized how cellular senescence—a biological process in which aging cells change how they function—is associated with human brain structure in both development and late life.
The study, published in Cell, provides new insight into how molecular signatures of cellular senescence that are present during development and aging mirror those associated with brain volume and cortical organization.
Understanding brain structure is a central challenge in neuroscience. Although brain structure changes throughout life and is linked to both aging and neurodegenerative conditions such as Parkinson’s and Alzheimer’s diseases, the underlying molecular processes involved—including cellular senescence—are not defined.
Researchers at the Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine), have found that a key protein can help to regenerate neural stem cells, which may improve aging-associated decline in neuronal production of an aging brain.
Published in Science Advances, the study identified a transcription factor in the brain, cyclin D-binding myb-like transcription factor 1 (DMTF1), as a critical driver of neural stem cell function during the aging process. Transcription factors are proteins that regulate genes to ensure that they are expressed correctly in the intended cells.
The study, led by Assistant Professor Ong Sek Tong Derrick and first author Dr. Liang Yajing, both from the Department of Physiology and the Healthy Longevity Translational Research Program at NUS Medicine, sought to identify biological factors that influence the degeneration of neural stem cell function often associated with aging, and guide the development of therapeutic approaches to mitigate the adverse effects of neurological aging.
Ray, you’ve made two predictions that I think are important. The first one, as you said, was the one you announced back in 1989: that we would reach human-level AI by 2029. And as you said, people laughed at it.
But there’s another prediction you’ve made: that we will reach the Singularity by 2045. There’s a lot of confusion here. In other words, if we reach human-level AI by 2029 and it then grows exponentially, why do we have to wait until 2045 for the Singularity? Could you explain the difference between these two?
It’s because that’s the point at which our intelligence will become a thousand times greater. One of the ways my view differs from others is that I don’t see it as us having our own intelligence—that is, biological intelligence—while AI exists somewhere else, and we interact with it by comparing human intelligence to AI.
Founder of XPRIZE and pioneer in exponential technologies. Building a world of Abundance through innovation, longevity, and breakthrough ventures.
Over 60? THIS Morning Habit TRIPLES Stroke Risk In Older Adults! | Senior Health Tips.
Most people don’t know this, but the first 90 minutes after waking are the most dangerous for adults over 60 — especially when it comes to stroke risk. 🧠⚠️ New studies from Harvard, Tokyo, and Toronto reveal that certain common morning habits can dramatically increase vascular stress, spike blood pressure, restrict blood flow to the brain, and trigger dangerous clotting patterns in older adults. These habits look harmless on the outside, but inside the body, they create the perfect storm for a stroke. 😳
In this video, we reveal the 6 morning habits that triple stroke risk in seniors, ranked from least to most dangerous. You’ll learn why the aging vascular system reacts differently in the morning, why certain actions overload the arteries, how sudden pressure changes affect the brain, and the specific morning routines neurologists now warn older adults to avoid. We also explain what the research discovered about Habit #1 — a behavior so strongly linked to stroke risk that scientists repeated the study twice to confirm the results. 🧬📊
If you or someone you love is over 60, this is essential information. These morning habits can quietly raise your risk without symptoms, but the good news is that simple changes can help protect your brain, improve circulation, and lower your chances of experiencing a life-altering event. ❤️🩹 Stay until the end — your brain health may depend on it.