Toggle light / dark theme

Ronald Kohanski at Ending Age-Related Diseases 2019

Today, we’re offering another discussion from Ending Age-Related Diseases 2019, our highly successful two-day conference that featured talks from leading researchers and investors, bringing them together to discuss the future of aging and rejuvenation biotechnology.


Today, we’re offering another talk from Ending Age-Related Diseases 2019, our highly successful two-day conference that featured talks from leading researchers and investors, bringing them together to discuss the future of aging and rejuvenation biotechnology.

Ronald Kohanski, Deputy Director of the Division of Aging Biology at the National Institute of Aging, gave a talk entitled Concepts and Perspectives in Geroscience. He discussed the ways in which aging affects systems and cells, the problems with using lifespan as an endpoint, the concept of resiliency, parabiosis, telomeres, unexpected effects at a distance with regards to interventions, and several in-depth concepts relating to the aging of specific cell types, such as muscle and brain cells.

From centenarians’ genetic code, a potential new therapy against cardiovascular diseases

Some people live much longer than average, partly thanks to their DNA. A study, published in the European Heart Journal, shows that it could be possible to replicate this genetic gift even for those lacking it. The way is now open to an innovative therapy model capable of preventing and fighting cardiovascular diseases through a real rejuvenation of blood vessels.

The study, conducted by the I.R.C.C.S. Neuromed, the I.R.C.C.S. Multimedica and the Department of Medicine, Surgery, and Dentistry, Salerno Medical School University of Salerno, with the support of the Cariplo Foundation and the Italian Ministry of Health, focuses on the gene that encodes the BPIFB4 . In the past, the same research group had identified a variant of this gene, the so-called LAV (“longevity associated variant”), which prevails in people over 100 years of age. Now, through a , researchers have inserted the LAV-BPIFB4 gene into the DNA of animal models particularly susceptible to atherosclerosis and, consequently, to cardiovascular diseases.

“The results—says Annibale Puca, coordinator of a research team at the University of Salerno and at I.R.C.C. MultiMedica—were extremely encouraging. We observed an improvement in the functionality of the endothelium (the inner surface of blood vessels), a reduction of atherosclerotic plaques in the arteries and a decrease in the inflammatory state.”

The transhumanists who want to live forever

For a core of longevity true believers, the time to intervene is now.


“How old are you?” James Clement wanted to know.

I turn 50 this year. There’s a new creaking in my bones; my skin doesn’t snap back the way it used to. It’s developed a dull thickness—you can’t tickle me at all. My gums are packing it in and retreating toward my jaw. These changes have been gradual or inexplicably sudden, like the day when I could no longer see the typed words that are my profession. Presbyopia, the ophthalmologist told me. Totally normal. You’re middle-aged.

To Clement, though, my age was great news. “Yep, you are going to live forever,” he said. “I think anybody under 50 who does not have a genetic liability will make it to longevity escape velocity.”

Inducing Pluripotency Through Multiple Routes

A new study outlines multiple ways in which epiblast stem cells can be reprogrammed back into a fully pluripotent state, paving the way for a better understanding of epigenetics.

The role of epigenetics

Epigenetics are why our cells, which all have the same DNA, differ in function. A bone cell has the same genetics as a nerve cell, but its epigenetic switches instruct it to perform the functions of a bone cell and not a nerve cell. Epigenetic alterations, however, are one of the primary hallmarks of aging. As we age, harmful epigenetic switches are activated and beneficial ones are deactivated, causing age-related dysfunction. This may even lead to inflammation, which causes further epigenetic damage, leading to a dangerous feedback loop.

Aubrey de Grey on how science will help us end aging and become almost immortal. Book Person #30

The de Grey… AEWR.


Storytel, a monthly free trial: https://storytel.ru/bookperson
VK public page «Mustreads» where you can win the book «Ending Aging»: https://vk.com/mustreads
Mustreader: https://instagram.com/mustreader
Mustreads, Telegram: https://tlg.name/mustreads
Mustwatch, Telegram: https://tlg.name/mustwatch
Support the project on Patreon: https://patreon.com/mustreader

21 lessons for the 21st century by Yuval Noah Harari: https://amzn.to/2H6QN5u
Infinite Jest by David Foster Wallace: https://amzn.to/2Z8pHkq
The Fry Chronicles by Stephen Fry: https://amzn.to/2KAlLVR
SENS Research Foundation: https://www.sens.org/
Support SENS: https://www.sens.org/get-involved/
Podcast episode of Terminal Reading with KrioRus co-founder, part 1: https://tlg.name/mustreads/1981; part 2: https://tlg.name/mustreads/1989
Website of KrioRus: http://kriorus.ru/

Dr. Denise Montell — UC Santa Barbara — Department of Molecular, Cellular, and Developmental Biology — Anastasis — ideaXme — Ira Pastor

Dr. Michael West at Ending Age-Related Diseases 2018 — The Reversibility of Human Aging | LEAF

Dr. Michael West, CEO of AgeX Therapeutics and Founder of Geron Corporation, discusses breakthroughs in the understanding of biological regeneration and in induced tissue regeneration, through his talk “Hayflick Rewound: Somatic Restriction, Epigenetics, and the Reversibility of Human Aging”. This talk was given at the Ending Age-Related Diseases conference in NYC. Join us at http://lifespan.io/hero

►Conference Page: https://www.leafscience.org/ending-age-related-diseases-adva…prospects/
►Subscribe for more: https://www.youtube.com/user/LifespanIO?sub_confirmation=1
►This video is presented by LEAF. Please support our work by becoming a “Lifespan Hero”: http://lifespan.io/hero

► #LifeExtension #MichaelWest #AgeX

/* */