БЛОГ

Archive for the ‘materials’ category: Page 121

Oct 26, 2022

Scientists discover material that can be made like a plastic but conducts like a metal

Posted by in categories: materials, transportation

Scientists with the University of Chicago have discovered a way to create a material that can be made like a plastic, but conducts electricity more like a metal.

The research, published Oct. 26 in Nature, shows how to make a kind of material in which the molecular fragments are jumbled and disordered, but can still conduct electricity extremely well.

This goes against all of the rules we know about for conductivity—to a , it’s kind of like seeing a car driving on water and still going 70 mph. But the finding could also be extraordinarily useful; if you want to invent something revolutionary, the process often first starts with discovering a completely new material.

Oct 25, 2022

New technology enables the manufacture of materials that mimic the structure of living blood vessels

Posted by in categories: biotech/medical, materials

An international consortium of researchers led by the University of Sydney, has developed technology to enable the manufacturing of materials that mimic the structure of living blood vessels, with significant implications for the future of surgery.

Preclinical testing found that following transplantation of the manufactured blood vessel into mice, the body accepted the material, with new cells and tissue growing in the right places—in essence transforming it into a “living” blood vessel.

Senior author Professor Anthony Weiss from the Charles Perkins Center said while others have tried to build blood vessels with various degrees of success before, this is the first time scientists have seen the vessels develop with such a high degree of similarity to the complex structure of naturally occurring blood vessels.

Oct 25, 2022

Goodbye AC: This new roofing material keeps houses cool

Posted by in categories: energy, materials

Air conditioning is something you barely notice — until the power goes out, and it no longer works. But what if keeping cool didn’t require electricity at all?

A scientist has invented a material that reflects the sun’s rays off rooftops, and even absorbs heat from homes and buildings and radiates it away. And — get this — it is made from recyclable paper. The essential AC: Air conditioners are in 87% of homes in the United States, costing the homeowner $265 per year, on average. Some homes can easily spend twice that.

With global temperatures on the rise, no one is giving up their AC. More people are installing air conditioners than ever before, especially in developing countries where the middle class can finally afford them. 15 years ago, very few people in China’s urban regions had air conditioners; now, there are more AC units in China than there are homes.

Oct 24, 2022

What physical materials can learn from AI neural networks

Posted by in categories: materials, robotics/AI

A new type of material can learn and improve its ability to deal with unexpected forces thanks to a unique lattice structure with connections of variable stiffness, as described in a new paper by my colleagues and me.

Oct 24, 2022

Scientists develop “smart plastic” that changes its form from soft to hard in sunlight

Posted by in categories: materials, robotics/AI

Researchers say they were inspired by living things from trees to shellfish.

They were inspired by living things, from trees to shellfish. Researchers at the University of Texas at Austin set their collective advanced minds on creating a plastic that would mimic real life. It would be like many life forms that are soft and stretchy in some places and hard and rigid in others.

Their success, a first ever, using only light and a catalyst to change the properties such as hardness and elasticity in molecules of the same type. The resulting material is ten times stronger than natural rubber and could very well change flexibility of electronics and robotics.

Continue reading “Scientists develop ‘smart plastic’ that changes its form from soft to hard in sunlight” »

Oct 22, 2022

Radioactive implant wipes tumors in unprecedented pre-clinical success

Posted by in categories: biotech/medical, materials

Engineers at Duke University have developed a novel delivery system for cancer treatment and demonstrated its potential against one of the disease’s most troublesome forms. In newly published research in mice with pancreatic cancer, the scientists showed how a radioactive implant could completely eliminate tumors in the majority of the rodents, demonstrating what they say is the most effective treatment ever studied in these pre-clinical models.

Pancreatic cancer is notoriously difficult to diagnose and treat, with tumor cells of this type highly evasive and loaded with mutations that make them resistant to many drugs. It accounts for just 3.2 percent of all cancers, yet is the third leading cause of cancer-related death. One way of tackling it is by deploying chemotherapy to hold the tumor cells in a state that makes them vulnerable to radiation, and then hitting the tumor with a targeted radiation beam.

But doing so in a way that attacks the tumor but doesn’t expose the patient to heavy doses of radiation is a fine line to tread, and raises the risk of severe side effects. Another method scientists are exploring is the use of implants that can be placed directly inside the tumor to attack it with radioactive materials from within. They have made some inroads using titanium shells to encase the radioactive samples, but these can cause damage to the surrounding tissue.

Oct 21, 2022

Scientists are one step closer to producing synthetic cells that can interact with living matter

Posted by in categories: innovation, materials

The study describes the integration of cell division machinery in synthetic cells, a breakthrough in the field.

For decades, researchers have been fascinated by the process of cell division, a highly intricate process driven by a precise cocktail of components. To better understand this phenomenon, researchers have been trying to create synthetic cells that mimic nature.

While it will take some time before we have fully functional synthetic cells, a study led by researchers from DWI—Leibniz Institute for Interactive Materials has brought this goal one step closer. The study describes the integration of cell division machinery in synthetic cells, a breakthrough in the field.

Oct 21, 2022

New CERN Facility Allows Study of Radiation Damage to Materials

Posted by in category: materials

CERN’s “irradiation station” will investigate the effect of radiation on commercial materials, such as lubricants and gaskets, that are used regularly in accelerator beamlines and other radiation environments.

Oct 20, 2022

Reprogrammable materials selectively self-assemble

Posted by in categories: materials, robotics/AI

While automated manufacturing is ubiquitous today, it was once a nascent field birthed by inventors such as Oliver Evans, who is credited with creating the first fully automated industrial process, in flour mill he built and gradually automated in the late 1700s. The processes for creating automated structures or machines are still very top-down, requiring humans, factories, or robots to do the assembling and making.

However, the way nature does assembly is ubiquitously bottom-up; animals and plants are self-assembled at a cellular level, relying on proteins to self-fold into target geometries that encode all the different functions that keep us ticking. For a more bio-inspired, bottom-up approach to assembly, then, human-architected materials need to do better on their own. Making them scalable, selective, and reprogrammable in a way that could mimic nature’s versatility means some teething problems, though.

Continue reading “Reprogrammable materials selectively self-assemble” »

Oct 20, 2022

The successful integration of a sub-0.5nm dielectric with 2D semiconductors

Posted by in categories: computing, materials

Field-effect transistors (FETs) are transistors in which the resistance of most of the electrical current can be controlled by a transverse electric field. Over the past decade or so, these devices have proved to be very valuable solutions for controlling the flow of current in semiconductors.

To further develop FETs, electronics engineers worldwide have recently been trying to reduce their size. While these down-scaling efforts have been found to increase the device’s speed and lower the power consumption, they are also associated with short-channel effects (i.e., unfavorable effects that occur when an FET’s channel length is approximately equal to the space charge regions of source and drain junctions within its substrate).

These undesirable effects, which include barrier lowering and velocity saturation, could be suppressed by using 2D semiconductor channels with high carrier mobilities and ultrathin high–k dielectrics (i.e., materials with high dielectric constants). Integrating 2D semiconductors with dielectrics with similar oxide thicknesses has been found to be highly challenging.