Toggle light / dark theme

Major Implications — Scientists Have Created a “Living Blood Vessel”

This is the first time scientists have observed vessels form with such a close resemblance to the complicated structure of naturally occurring blood vessels.

An international research collaboration headed by the University of Sydney has created technology that allows for the production of materials that mirror the structure of living blood vessels, with major implications for the future of surgery.

Preclinical research showed that once the manufactured blood vessel was transplanted into mice, the body accepted it and new cells and tissue began to develop in the appropriate locations, thereby converting it into a “living blood vessel.”

#NBIC: Now, researchers at MIT, the University of Minnesota, and Samsung have developed a new kind of camera that can detect terahertz pulses rapidly, with high sensitivity, and at room temperature and pressure

What’s more, it can simultaneously capture information about the orientation, or “polarization,” of the waves in real-time, which existing devices cannot.

This information can be used to characterize materials that have asymmetrical molecules or to determine the surface topography of materials.

Researchers unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’

Researchers at Purdue University have discovered new waves with picometer-scale spatial variations of electromagnetic fields that can propagate in semiconductors like silicon. The research team, led by Dr. Zubin Jacob, Elmore Associate Professor of Electrical and Computer Engineering and Department of Physics and Astronomy, published their findings in Physical Review Applied in a paper titled “Picophotonics: Anomalous Atomistic Waves in Silicon.”

“The word microscopic has its origins in the length scale of a micron, which is a million times smaller than a meter. Our work is for matter interaction within the picoscopic regime which is far smaller, where the discrete arrangement of atomic lattices changes light’s properties in surprising ways,” says Jacob.

These intriguing findings demonstrate that natural media host a variety of rich light-matter interaction phenomena at the atomistic level. The use of picophotonic waves in semiconducting materials may lead researchers to design new, functional optical devices, allowing for applications in .

Ultra-thin smartphone touchscreens could be printed like a newspaper

face_with_colon_three circa 2020.


Scientists in Australia have developed a new type of electronic material that is touch-responsive and just a fraction of the thickness of current smartphone screens. This could see it one day find use in next-generation mobile devices, and because of its incredible thinness and flexibility, could be manufactured at large scale using roll-to-roll (R2R) processing like a printed newspaper.

The breakthrough comes from researchers at RMIT University, who began with a material commonly used in today’s mobile touchscreens called indium-tin oxide. This transparent material is highly conductive but does have its shortcomings, chiefly that it is very brittle, so the team sought to give it better pliability by greatly reducing its thickness.

“We’ve taken an old material and transformed it from the inside to create a new version that’s supremely thin and flexible,” says lead researcher Dr Torben Daeneke. “You can bend it, you can twist it, and you could make it far more cheaply and efficiently than the slow and expensive way that we currently manufacture touchscreens.”

/* */