Toggle light / dark theme

Trestle Bio Announces Research Collaboration with Humacyte

Researchers have created a cement-based material that does more than just provide structural support—it can generate and store electricity. This breakthrough could mark a turning point for future infrastructure in smart cities.

The material is a cement-hydrogel composite developed by a team led by Professor Zhou Yang at Southeast University in China. The team took inspiration from the layered structure inside plant stems to create a material that can harness thermal energy and convert it into electricity.

This is a repost. I think Andrew posted it earlier.


Researchers developed a cement-hydrogel composite that can generate and store power, paving the way for self-powered smart infrastructure.

Next-gen tech for at-home use can quickly detect endometriosis biomarker in period blood

Almost 200 million people, including children, around the world have endometriosis, a chronic disease in which the lining of the uterus grows outside of the uterus. More severe symptoms, such as extreme pain and potentially infertility, can often be mitigated with early identification and treatment, but no single point-of-care diagnostic test for the disease exists despite the ease of access to the tissue directly implicated.

While Penn State Professor Dipanjan Pan said that the blood and tissue shed from the uterus each month is often overlooked—and even stigmatized by some—as medical waste, menstrual effluent could enable earlier, more accessible detection of biological markers to help diagnose this disease.

Pan and his group have developed a proof-of-concept device capable of detecting HMGB1, a protein implicated in endometriosis development and progression, in menstrual blood with 500% more sensitivity than existing laboratory approaches. The device, which looks and operates much like a pregnancy test in how it detects the protein, hinges on a novel technique to synthesize nanosheets made of the atomically thin 2D material borophene, according to Pan, the Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine and corresponding author of the study detailing the team’s work.

Quantum Dot DBR Lasers Monolithically Integrated on Silicon Photonics by In-Pocket Heteroepitaxy

Monolithically integrated lasers on silicon photonics enable scalable, foundry-compatible production for data communications applications. However, material mismatches in heteroepitaxial systems and high coupling losses pose challenges for III-V integration on silicon. We combine three techniques: recessed silicon pockets for III-V growth, two-step heteroepitaxy using both MOCVD and MBE, and a polymer facet gap-fill approach to develop O-band InAs quantum dot lasers monolithically integrated on silicon photonics chiplets. Lasers coupled to silicon ring resonators and silicon nitride distributed Bragg reflectors (DBR) demonstrate single-mode lasing with side-mode suppression ratio up to 32 dB. Devices lase at temperatures up to 105 °C with an extrapolated operational lifetime of 6.2 years at 35 °C.

Rabi-like splitting arises from nonlinear interactions between magnons in synthetic antiferromagnet

Synthetic antiferromagnets are carefully engineered magnetic materials made up of alternating ferromagnetic layers with oppositely aligned magnetic moments, separated by a non-magnetic spacer. These materials can display interesting magnetization patterns, characterized by swift changes in the behavior of magnetic moments in response to external forces, such as radio frequency (RF) currents.

When the magnetization of each layer in synthetic antiferromagnets is disturbed by an external force, its start to “precess,” or in other words, to rotate around their equilibrium direction. Past studies have identified two primary collective spin oscillation modes in synthetic antiferromagnets, influencing how magnetic moments precess.

The first is the acoustic mode, characterized by the synchronized rotation of ferromagnetic layers in the same direction and phase. The second is the optical mode, in which ferromagnetic layers rotate in opposite directions (i.e., with one layer’s magnetization tipping up and the other down).

/* */