БЛОГ

Archive for the ‘materials’ category: Page 41

May 10, 2024

Researchers can now accurately measure the emergence and damping of a plasmonic field

Posted by in category: materials

“We employed this configuration for the first time to characterize the signal field emerging from a resonantly excited plasmonic sample,” says Francesca Calegari, lead scientist at DESY, physics Professor at Universität Hamburg and a spokesperson of the Cluster of Excellence “CUI: Advanced Imaging of Matter.”

The difference of the reconstructed pulse with plasmon interaction to the reference pulse allowed the scientists to trace the emergence of the plasmon and its fast decay which they confirmed by electrodynamic model calculations.

“Our approach can be used to characterize arbitrary plasmonic samples in and in the far-field,” adds CUI scientist Prof. Holger Lange. Additionally, the precise characterization of the laser field emerging from nanoplasmonic materials could constitute a new tool to optimize the design of phase-shaping devices for .

May 9, 2024

Ultrasound experiment identifies new superconductor

Posted by in categories: materials, physics

With pulses of sound through tiny speakers, Cornell physics researchers have clarified the basic nature of a new superconductor.

May 8, 2024

Project Lyra — Exploring Interstellar Objects

Posted by in categories: materials, space

Astronomy Magazine — Project Lyra is the cover feature!

A big thank you to Maciej Rebisz for the images and the entire Project Lyra team for the research work!

Continue reading “Project Lyra — Exploring Interstellar Objects” »

May 8, 2024

Revolutionizing Photonics: 2D Materials Manipulate Light With Remarkable Precision

Posted by in categories: electronics, materials

NYU Abu Dhabi researchers have unveiled a novel 2D material improving optical modulation for advanced systems and communications.

Responding to the increasing demand for efficient, tunable optical materials capable of precise light modulation to create greater bandwidth in communication networks and advanced optical systems, a team of researchers at NYU Abu Dhabi’s Photonics Research Lab (PRL) has developed a novel, two-dimensional (2D) material capable of manipulating light with exceptional precision and minimal loss.

Tunable optical materials (TOMs) are revolutionizing modern optoelectronics, electronic devices that detect, generate, and control light. In integrated photonics circuits, precise control over the optical properties of materials is crucial for unlocking groundbreaking and diverse applications in light manipulation. Two-dimensional materials like Transition Metal Dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across a short-wave infrared (SWIR) region while maintaining precise phase control at low signal loss within a compact footprint has been a persistent challenge.

May 8, 2024

Smart labs for bespoke synthesis of nanomaterials are emerging

Posted by in categories: materials, nanotechnology

In the early 20th century, the development of a catalyst for ammonia synthesis by the Haber-Bosch method took more than 10,000 experiments before it was successful. The development of new materials is a time-consuming and costly process from design to commercialization.

May 8, 2024

Materials scientists reveal pathway for designing optical materials with specialized properties

Posted by in category: materials

While we usually think of disorder as a bad thing, a team of materials science researchers led by Rohan Mishra, from Washington University in St. Louis, and Jayakanth Ravichandran, from the University of Southern California, have revealed that—when it comes to certain crystals—a little structural disorder might have big impacts on useful optical properties.

May 7, 2024

Scientists directly measure a key reaction in neutron star binaries

Posted by in categories: materials, space

An X-ray burst (XRB) is a violent explosion that occurs on the surface of a neutron star as it absorbs material from a companion star. During this absorption, increasing temperatures and densities on the surface of the neutron star ignite a cascade of thermonuclear reactions.

May 6, 2024

Engineers create a caterpillar-shaped robot that splits into segments, reassembles, hauls and crawls

Posted by in categories: materials, robotics/AI

Engineers at Princeton and North Carolina State University have combined ancient paper-folding and modern materials science to create a soft robot that bends and twists through mazes with ease.

May 3, 2024

Dynamic two-dimensional covalent organic frameworks

Posted by in category: materials

Two-dimensional covalent organic frameworks (2D COFs) enable the construction of bespoke functional materials, but designing dynamic 2D COFs is challenging. Now it has been shown that perylene-diimide-based COFs can open and close their pores upon uptake or removal of guests, while fully retaining their crystalline long-range order. Moreover, the variable COF geometry enables stimuli-responsive optoelectronic properties.

May 3, 2024

Physicists discover new way to make strange metal

Posted by in categories: materials, physics

The work introduces a completely new way to create and study , whose electrons behave differently than those in a conventional metal like copper. “It is a potential new approach to designing these unusual materials,” says Joseph G. Checkelsky, lead principal investigator of the research and Associate Professor of Physics.

Linda Ye, MIT Ph.D. ‘21, is first author of a paper on the work published earlier this year in Nature Physics. “A new way of making strange metals will help us develop a unifying theory behind their behavior. That has been quite challenging to date, and could lead to a better understanding of other materials, including ,” says Ye, now an assistant professor at the California Institute of Technology.

The Nature Physics paper is accompanied by a News & Views article titled, “A strange way to get a strange metal.”

Page 41 of 305First3839404142434445Last