Toggle light / dark theme

Transparent paper-based material can hold boiling water and degrade in deep ocean in under a year

A team of biomaterial engineers, environmental resource specialists and industrial design researchers affiliated with a host of institutions across Japan has developed a biodegradable material that is clear and can hold boiling water—and it degrades in less than a year after settling on the ocean floor. Their work is published in the journal Science Advances.

Prior research has shown that millions of tons of plastics are piling up in the environment, including on the . Because of this, scientists have been looking for better, biodegradable replacements. In this new effort, the research team has developed a paper-based, clear, that can stand up to liquids for several hours, even those that have been heated, allowing them to replace plastic cups, straws, and other everyday objects.

The research team made the material by starting with a standard cellulose hydrogel. After drying, the material was treated with an aqueous lithium bromide solution which forced the cellulose to solidify into desired shapes. The researchers note that end-products could be as thin as plastic cup walls, or as thick as desired. They describe the material as tPB, a transparent 3D material made solely of cellulose.

Titanium microparticles prevalent in oral tissue around dental implants, study shows

Titanium micro-particles in the oral mucosa around dental implants are common. This is shown in a new study from the University of Gothenburg and Uppsala University, which also identified 14 genes that may be affected by these particles.

Registry data indicate that about 5% of all adults in Sweden have —and potentially also titanium particles in the tissue surrounding the implants. According to the researchers, there is no reason for concern, but more knowledge is needed.

“Titanium is a well-studied material that has been used for decades. It is biocompatible and safe, but our findings show that we need to better understand what happens to the micro-particles over time. Do they remain in the tissue or spread elsewhere in the body?” says Tord Berglundh, senior professor of periodontology at Sahlgrenska Academy, University of Gothenburg.

Electrolyte additives enhance ultra-thin lithium metal anodes for longer-lasting batteries

A research team has developed a technology that dramatically enhances the stability of ultra-thin metal anodes with a thickness of just 20μm. Led by Professor Yu Jong-sung from the Department of Energy Science and Engineering at DGIST, the team proposed a new method using electrolyte additives to address the issues of lifetime and safety that have hindered the commercialization of lithium metal batteries. The work is published in the journal Advanced Energy Materials.

Lithium metal anodes (3,860 mAh g⁻¹) have over 10 times the capacity of widely used graphite anodes (372 mAh g⁻¹) and feature a low standard reduction potential, making them promising candidates for next-generation anode materials. However, during , lithium tends to grow in dendritic forms, causing short circuits and thermal runaway, which leads to lifetime and safety issues. Moreover, due to volume expansion, the solid electrolyte interphase (SEI) repeatedly degrades and reforms, leading to rapid electrolyte depletion.

The use of ultra-thin lithium metal with a thickness below 50μm is essential, especially for the commercialization of lithium metal batteries. However, such issues become more severe as thickness reduces. Accordingly, both academia and industry have focused on SEI engineering to enhance the stability of , among which SEI formation strategies using electrolyte additives have emerged as a simple yet effective approach.

Scientists advance a greener way to produce iron: Process could help cut carbon emissions in the steel industry

University of Oregon chemists are bringing a greener way to make iron metal for steel production closer to reality, a step towards cleaning up an industry that’s one of the biggest contributors to carbon emissions worldwide. The research was published in ACS Energy Letters.

Last year, UO chemist Paul Kempler and his team reported a way to create iron with electrochemistry, using a series of chemical reactions that turn saltwater and into pure iron metal.

In their latest work, they’ve optimized the starting materials for the process, identifying which kinds of iron oxides will make the chemical reactions the most cost-effective. That’s a key to making the process work at an industrial scale.

3D-printed open-source robot offers accessible solution for materials synthesis

A team of researchers led by Professor Keisuke Takahashi at the Faculty of Science, Hokkaido University, have created FLUID (Flowing Liquid Utilizing Interactive Device), an open-source robotic system constructed using a 3D printer and off-the-shelf electronic components.

To demonstrate FLUID’s capabilities, the team used the robot to automate the co-precipitation of cobalt and nickel, creating binary materials with precision and efficiency.

“By adopting open source, utilizing a 3D printer, and taking advantage of commonly-available electronics, it became possible to construct a functional robot that is customized to a particular set of needs at a fraction of the costs typically associated with commercially-available robots,” said Mikael Kuwahara, the lead author of the study.

Astronomers discover doomed pair of spiraling stars on our cosmic doorstep

University of Warwick astronomers have discovered an extremely rare, high-mass, compact binary star system only ~150 light years away. These two stars are on a collision course to explode as a type 1a supernova, appearing 10 times brighter than the moon in the night sky.

Type 1a supernovae are a special class of cosmic explosion, famously used as “standard candles” to measure distances between Earth and their host galaxies. They occur when a white dwarf (the dense remnant core of a star) accumulates too much mass, is unable to withstand its own gravity, and explodes.

It has long been theoretically predicted that two orbiting white dwarfs are the cause of most type 1a supernova explosions. When in a close orbit, the heavier white dwarf of the pair gradually accumulates material from its partner, which leads to that star (or both stars) exploding.

/* */