БЛОГ

Archive for the ‘materials’ category: Page 57

Jan 27, 2024

Scientists turn glass into a ‘transparent’ semiconductor with laser

Posted by in categories: innovation, materials

The team was thrilled with this discovery and saw the potential for creating durable patterns on the glass surface that could produce electricity when illuminated. This is a significant breakthrough because the technique does not require any additional materials, and all that is needed is tellurite glass and a femtosecond laser to create an active photoconductive material.

“Tellurium being semiconducting, based on this finding we wondered if it would be possible to write durable patterns on the tellurite glass surface that could reliably induce electricity when exposed to light, and the answer is yes,” explains Yves Bellouard who runs EPFL’s Galatea Laboratory.

Jan 27, 2024

Snails’ Teeth Beats Spider Silk As Nature’s Strongest Material

Posted by in category: materials

The discovery makes sense: Mollusks use these teeth to excavate rocks while they feed.

Jan 27, 2024

Shadows and Light: Discovering the Hidden Depths of Quantum Materials

Posted by in categories: materials, quantum physics

Scientists used a laser-based technique to reveal hidden quantum properties of the material Ta2NiSe5, potentially advancing the development of quantum light sources.

Certain materials have desirable properties that are hidden, and just as you would use a flashlight to see in the dark, scientists can use light to uncover these properties.

Researchers at the University of California San Diego have used an advanced optical technique to learn more about a quantum material called Ta2NiSe5 (TNS). Their work was published in the journal Nature Materials.

Jan 25, 2024

Coal: Don’t Burn It, Compute With It

Posted by in categories: energy, materials

A certain fossil fuel works well as a 2D insulating films that could help launch a new era of semiconductors made with 2D materials.

Jan 25, 2024

New Room Temperature Superconductor Throws Hat In The Ring — This Time, It’s Graphite

Posted by in category: materials

New research reports magnetic and electrical effects that suggest superconductivity.

Jan 25, 2024

Fingerprinting biomolecules with the help of sound

Posted by in categories: materials, nanotechnology

A team of researchers from the Institute for Optoelectronic Systems and Microtechnology at Universidad Politécnica de Madrid (UPM) has designed a biosensor capable of identifying proteins and peptides in quantities as low as a single monolayer. For that, a surface acoustic wave (SAW), a kind of electrically controlled nano earthquake on a chip, is generated with an integrated transducer to act on a stack of 2D materials coated with the biomolecules to be detected.

As they report in the journal Biosensors and Bioelectronics in an article titled “Surface–-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit,” the SAW would ripple the surface of a graphene-based stack in such a way that it confines mid– to very small volumes, enhancing at the nanoscale.

In particular, quasiparticles that are part light (photons) and part matter (electrons and lattice vibrations), called surface plasmon-phonon polaritons, are formed at the rippled stack interplaying strongly with the molecules atop.

Jan 25, 2024

Beyond the Blink: Probing Quantum Materials at Attosecond Speeds

Posted by in categories: materials, quantum physics

Researchers have developed a new spectroscopy method to study ultrafast processes in strongly correlated materials, achieving sub-femtosecond resolution.

An international team of researchers from the European XFEL together with colleagues from the Max Born Institute in Berlin, the Universities of Berlin and Hamburg, The University of Tokyo, the Japanese National Institute of Advanced Industrial Science and Technology (AIST), the Dutch Radboud University, Imperial College London, and Hamburg Center for Ultrafast Imaging, have presented new ideas for ultrafast multi-dimensional spectroscopy of strongly correlated solids. This work will be published today (January 24) in Nature Photonics.

Exploring Strongly Correlated Solids

Jan 24, 2024

Making a superconductor liquid–solid out of the vacuum with hundred-exatesla-strong magnetic fields

Posted by in category: materials

The discovery of superconductivity more than a century ago has significantly changed our world.

The story began in 1911 when the Dutch physicist Heike Kamerlingh Onnes observed that the electrical resistance of mercury abruptly dropped to zero when it was cooled to a temperature of about 4 Kelvin (approximately 269°C)—a bit colder than the boiling point of liquid helium.

Continue reading “Making a superconductor liquid–solid out of the vacuum with hundred-exatesla-strong magnetic fields” »

Jan 24, 2024

Shining a light on the hidden properties of quantum materials

Posted by in categories: materials, quantum physics

Certain materials have desirable properties that are hidden, and just as you would use a flashlight to see in the dark, scientists can use light to uncover these properties.

Researchers at the University of California San Diego have used an advanced optical technique to learn more about a quantum material called Ta2NiSe5 (TNS). Their work appears in Nature Materials.

Materials can be perturbed through different external stimuli, often with changes in temperature or pressure; however, because light is the fastest thing in the universe, materials will respond very quickly to optical stimuli, revealing properties that would otherwise remain hidden.

Jan 24, 2024

Manipulated hafnia paves the way for next-gen memory devices

Posted by in categories: computing, materials

Scientists and engineers have been pushing for the past decade to leverage an elusive ferroelectric material called hafnium oxide, or hafnia, to usher in the next generation of computing memory.


Scientists outline new processes for leveraging the ferroelectric features of hafnia with the aim of enhancing high-performance computing.

Page 57 of 302First5455565758596061Last