Scientists have unveiled a cutting-edge quantum microscope that allows them to observe how electrons interact with strange atomic vibrations in twisted graphene, including a newly revealed “phason.” This phenomenon could help explain mysterious behaviors like superconductivity in materials rotate
Category: materials – Page 6
A UNSW study published today in Nature Communications presents an exciting step towards domain-wall nanoelectronics: a novel form of future electronics based on nano-scale conduction paths, and which could allow for extremely dense memory storage.
FLEET researchers at the UNSW School of Materials Science and Engineering have made an important step in solving the technology’s primary long-standing challenge of information stability.
Domain walls are “atomically sharp” topological defects separating regions of uniform polarisation in ferroelectric materials.
MIT engineers create ‘spaghetti’ style metamaterial that could enable stretchy computer chips that are almost indestructible
Posted in computing, materials | Leave a Comment on MIT engineers create ‘spaghetti’ style metamaterial that could enable stretchy computer chips that are almost indestructible
Essential for many industries ranging from Hollywood computer-generated imagery to product design, 3D modeling tools often use text or image prompts to dictate different aspects of visual appearance, like color and form. As much as this makes sense as a first point of contact, these systems are still limited in their realism due to their neglect of something central to the human experience: touch.
Fundamental to the uniqueness of physical objects are their tactile properties, such as roughness, bumpiness, or the feel of materials like wood or stone. Existing modeling methods often require advanced computer-aided design expertise and rarely support tactile feedback that can be crucial for how we perceive and interact with the physical world.
With that in mind, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have created a new system for stylizing 3D models using image prompts, effectively replicating both visual appearance and tactile properties. Their research is published on the arXiv preprint server.
The new super-strong copper alloy can be used to build better airplanes and spacecraft.
Graphene can support 50,000 times its own weight and can spring back into shape after being compressed by up to 80%. Graphene also has a much lower density than comparable metal-based materials. A new super-elastic, three-dimensional form of graphene can conduct electricity, and will probably pave t
When an electric current passes through some materials, it generates a voltage perpendicular to the direction in which the current is flowing and of an applied magnetic field. This physical phenomenon, known as the anomalous Hall effect, has been linked to the intrinsic properties of some materials.
The efficiency with which a longitudinal current drives a transverse spin-polarized current in these materials is referred to as the anomalous Hall angle (θA). In many conventional magnetic materials, this angle is typically very small, which in turn limits the sensitivity of sensors and other devices developed using these materials.
Researchers at the Chinese Academy of Sciences have introduced a new mathematical model that allows them to modulate the θA in the magnetic topological semimetal Co3Sn2S2.
A NIMS research team has developed an approach capable of accurately and rapidly predicting the degradation behavior of electrocatalysts used in water electrolyzers by employing data assimilation—a method commonly employed in weather forecasting.
After analyzing only 300 hours of experimental data, this approach accurately predicted the degradation of an electrocatalytic material occurring after approximately 900 hours of water electrolysis. This approach is able to accelerate and simplify the comparison of degradation properties among various electrocatalytic materials, potentially facilitating investigations into their degradation mechanisms and expediting the development of more efficient, economical and durable electrocatalytic materials.
The work is published in the journal ACS Energy Letters.
A multidisciplinary team at the University of California, Berkeley, the Georgia Institute of Technology and the Hong Kong University of Science and Technology has developed a stretchable, self-healing lithium battery that remains stable after 500 charge/discharge cycles. In their paper published in the journal Science Advances, the group describes how they developed the battery and possible uses for it.
Over the past several years, scientists have been developing batteries for different types of applications. One such type is the stretchable battery, which could be used in wearable electronics. Recently, a team at Linköping University announced that they had developed a fluid battery that can take any shape, allowing for its use in a wide variety of applications. In this new study, the team at UC Berkeley has developed a stretchable battery that also heals itself.
To make the new battery, the research team started with a zwitterionic polymer that had both a positive and negative charge. With such polymers, water molecules bond with the charged parts while the lithium ions are attracted by the negative parts of plastic. The arrangement allows water to be tightly bound in the battery, reducing the risk of it splitting when voltage is applied, while still allowing lithium ions to be released when desired.
Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.