БЛОГ

Archive for the ‘mathematics’ category: Page 151

Apr 10, 2016

The Big Bang: Arriving at the site of creation

Posted by in categories: mathematics, quantum physics, singularity, space

Part 2


In part 1 of the journey, we saw the leading observations that needed explanation. Explanations that we want to do through the theory of relativity and quantum mechanics. No technical and expert knowledge in these theories yet, only scratches of its implications. So let us continue.

THE RELATIVITY THEORY Deducing from the Hubble expansion, the galaxies were close in the distant past but certainly not in this current form as the telescopes now see them receding. In fact, if they were receding it also means they were expanding.

Therefore, when we reverse the receding galaxies into the far distant past they should end up at a point somewhere sometime with the smallest imaginable extension, if that extension is conceivable at all. Scientists call it the singularity, a mathematical deduction from the relativity theory. How did this immeasurable Universe made of clusters of galaxies we now see ever existed in that point called singularity?

Continue reading “The Big Bang: Arriving at the site of creation” »

Apr 5, 2016

Introduction: Explaining the Future of Synthetic Biology with Computer Programming’s Past

Posted by in categories: bioengineering, biotech/medical, business, computing, genetics, information science, mathematics, Ray Kurzweil, singularity

Like this article highlights; we will see a day soon when all techies will need some level of bio-science and/ or medical background especially as we move closer to Singularity which is what we have seen predicted by Ray Kurzweil and others. In the coming decade/s we will no longer see tech credentials relying strictly on math/ algorithms, code, etc, Techies will need some deeper knowledge around the natural sciences.


If you are majoring in biology right now, I say to you: that was a good call. The mounting evidence suggests that you placed your bet on the right degree. With emergent genetic recombination technologies improving at breakneck speed alongside a much deepened understanding of biological circuitry in simple, “home grown” metabolic systems, this field is shaping up to be a tinkerer’s paradise.

Many compare this stage of synthetic biology to the early days of microprocessing (the precursor to computers) when Silicon Valley was a place for young entrepreneurs to go if they needed a cheap place to begin their research or tech business. One such tech entrepreneur, the founder of O’Reilly media, Tim O’Reilly — who also coined the term “open source” — made this comparison in an interview with Wired magazine., O’Reilly further commented on synthetic biology saying, “It’s still in the fun stage.”

Continue reading “Introduction: Explaining the Future of Synthetic Biology with Computer Programming’s Past” »

Apr 4, 2016

Quantum physics has just been found hiding in one of the most important mathematical models of all time

Posted by in categories: information science, mathematics, particle physics, quantum physics, space

Game theory is a branch of mathematics that looks at how groups solve complex problems. The Schrödinger equation is the foundational equation of quantum mechanics — the area of physics focused on the smallest particles in the Universe. There’s no reason to expect one to have anything to do with the other.

But according to a team of French physicists, it’s possible to translate a huge number of problems in game theory into the language of quantum mechanics. In a new paper, they show that electrons and fish follow the exact same mathematics.

Schrödinger is famous in popular culture for his weird cat, but he’s famous to physicists for being the first to write down an equation that fully describes the weird things that happen when you try to do experiments on the fundamental constituents of matter. He realised that you can’t describe electrons or atoms or any of the other smallest pieces of the Universe as billiard balls that will be exactly where you expect them to be exactly when you expect them to be there.

Continue reading “Quantum physics has just been found hiding in one of the most important mathematical models of all time” »

Apr 2, 2016

The Bernie Sanders Phenomenon and Transhumanism

Posted by in categories: business, computing, economics, employment, geopolitics, mathematics, robotics/AI, transhumanism, virtual reality

https://youtube.com/watch?v=9grWo5ZofmA

A lot of transhumanism friends have asked me to write about Bernie Sanders, so here are my thoughts:


The transhumanism movement has been dramatically growing in size—and most of that growth is from millennials and youth joining. Transhumanists want to use science and technology to radically improve the human race, and the onslaught of new gear and gadgets to do that—like virtual reality, robots, and chip implants —are giving them plenty of ammunition to do that.

Continue reading “The Bernie Sanders Phenomenon and Transhumanism” »

Mar 23, 2016

Breaking the prime-number cipher, one proof at a time

Posted by in category: mathematics

Like a mirror image of Bedford’s Law, mathematicians have found a pattern in prime numbers that raises more questions than it answers.

Read more

Mar 16, 2016

Stephen Wolfram: Could There Be Alien Intelligence Among the Digits of Pi?

Posted by in categories: alien life, mathematics

Stephen Wolfram, the inventor of the mathematical programming system Wolfram Language, thinks there might be intelligent life, of a sort, in the digits of pi. He spoke recently at the SETI Institute about what his “principle of computational equivalence” means for non-human intelligence — check out the heady hour-and-a-half lecture below.

The key thread running through his concept is that simple rules underpin complex behavior. For Wolfram, the pigmentation patterns on a mollusk shell, for example, aren’t necessarily the outcome of deliberate evolutionary forces. “I think the mollusk is going out into the computational universe, finding a random program, and running it and printing it on its shell,” Wolfram says in the lecture. “If I’m right, the universe is just like an elaborate version of the digits of pi.” (There is some debate, of course, over just how right Wolfram is — though you won’t really get that from the lecture.)

Continue reading “Stephen Wolfram: Could There Be Alien Intelligence Among the Digits of Pi?” »

Mar 15, 2016

Happy #PiDay!

Posted by in category: mathematics

Read more

Mar 14, 2016

Mathematicians Discovered Something Super Freaky About Prime Numbers

Posted by in category: mathematics

Mathematicians have discovered a surprising pattern in the expression of prime numbers, revealing a previously unknown “bias” to researchers.

Primes, as you’ll hopefully remember from fourth-grade math class, are numbers that can only be divided by one or themselves (e.g. 2, 3, 5, 7, 11, 13, 17, etc.). Their appearance in the roll call of all integers cannot be predicted, and no magical formula exists to know when a prime number will choose to suddenly make an appearance. It’s an open question as to whether or not a pattern even exists, or whether or not mathematicians will ever crack the code of primes, but most mathematicians agree that there’s a certain randomness to the distribution of prime numbers that appear back-to-back.

Or at least that’s what they thought. Recently, a pair of mathematicians decided to test this “randomness” assumption, and to their shock, they discovered that it doesn’t actually exist. As reported in New Scientist, researchers Kannan Soundararajan and Robert Lemke Oliver of Stanford University in California have detected unexpected biases in the distribution of consecutive primes.

Continue reading “Mathematicians Discovered Something Super Freaky About Prime Numbers” »

Mar 13, 2016

Kuiper Belt Objects Point The Way To Planet 9

Posted by in categories: computing, mathematics, space

On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.

Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.

Read more

Mar 3, 2016

Bio Breakthrough: Scientists Unveil First Ever Biological Supercomputer

Posted by in categories: energy, mathematics, supercomputing

Canadian scientists have apparently opened the door to the world of biological supercomputers: this week they unveiled a prototype of a potentially revolutionary unit — as small as a book, energy-efficient with extreme mathematical capabilities and which, importantly, does not overheat.

Tianhe-1A

Read more