БЛОГ

Archive for the ‘mathematics’ category: Page 79

Jun 12, 2022

Scientists Discover New Molecule That Kills Hard-to-Treat Cancers

Posted by in categories: biotech/medical, mathematics

A new molecule synthesized by a University of Texas at Dallas researcher kills a broad spectrum of hard-to-treat cancers, including triple-negative breast cancer, by exploiting a weakness in cells not previously targeted by other drugs.

A study describing the research — which was carried out in isolated cells, in human cancer tissue and in human cancers grown in mice — was published online June 2 in the journal Nature Cancer.

Dr. Jung-Mo Ahn, a co-corresponding author of the study and a UT Dallas associate professor of chemistry and biochemistry in the School of Natural Sciences and Mathematics, has been passionate about his work designing small molecules that target protein-protein interactions in cells for over a decade. Using an approach called structure-based rational drug design, he previously developed potential therapeutic candidate compounds for treatment-resistant breast cancer and for prostate cancer.

Jun 10, 2022

Room-temperature molecular switch discovery paves the way for faster computers, longer-lasting batteries

Posted by in categories: computing, mathematics, quantum physics

University of Queensland scientists have cracked a problem that’s frustrated chemists and physicists for years, potentially leading to a new age of powerful, efficient, and environmentally friendly technologies.

Using , Professor Ben Powell from UQ’s School of Mathematics and Physics has discovered a “recipe” which allows molecular switches to work at room temperature.

“Switches are materials that can shift between two or more states, such as on and off or 0 and 1, and are the basis of all digital technologies,” Professor Powell said. “This discovery paves the way for smaller and more powerful and energy efficient technologies. You can expect batteries will last longer and computers to run faster.”

Jun 10, 2022

Quantum computers proved to have ‘quantum advantage’ on some tasks

Posted by in categories: computing, mathematics, quantum physics

View insights.


Not only do quantum computers have the edge over classical computers on some tasks, but they are also exponentially faster, according to a new mathematical proof.

Jun 10, 2022

Quantum physics exponentially improves some types of machine learning

Posted by in categories: mathematics, quantum physics, robotics/AI

Machine learning can get a boost from quantum physics.

On certain types of machine learning tasks, quantum computers have an exponential advantage over standard computation, scientists report in the June 10 Science. The researchers proved that, according to quantum math, the advantage applies when using machine learning to understand quantum systems. And the team showed that the advantage holds up in real-world tests.

“People are very excited about the potential of using quantum technology to improve our learning ability,” says theoretical physicist and computer scientist Hsin-Yuan Huang of Caltech. But it wasn’t entirely clear if machine learning could benefit from quantum physics in practice.

Jun 6, 2022

Using mirrors, lasers and lenses to bend light into a vortex ring

Posted by in categories: information science, mapping, mathematics

A team of researchers from the University of Shanghai for Science and Technology and the University of Dayton has developed a way to bend light into a vortex ring using mirrors, lasers and lenses. In their study, published in the journal Nature Photonics, the group built on work done by other teams in which vortex rings were observed incidentally, and then mathematically designed a system that could generate them on demand.

In 2016, another team of researchers discovered that under the right circumstances, strong pulses of light swirling around a central pipe-shaped pulse, could sometimes form into a donut-shaped vortex. Intrigued by the finding, the researchers with this new effort began to wonder if it might be possible to create such on demand.

They started by studying the properties and conditions that had led to the formations observed by the team in 2016 and applied mathematics to the problem. They found solutions that appeared to show how such rings could be made—solutions to Maxwell’s equations, in particular, they found, could be used to generate the kind of conformal mapping required.

Jun 3, 2022

Angela Sheffield — AI For Defense Nuclear Nonproliferation — National Nuclear Security Admin (NNSA)

Posted by in categories: economics, mathematics, military, nuclear energy, policy, robotics/AI, space

AI For Defense Nuclear Nonproliferation — Angela Sheffield, Senior Program Manager, National Nuclear Security Administration, U.S. Department of Energy.


Angela Sheffield is a graduate student and Space Industry fellow at the National Defense University’s Eisenhower School. She is on detail from the National Nuclear Security Administration (NNSA), where she serves as the Senior Program Manager for AI for Defense Nuclear Nonproliferation Research and Development.

Continue reading “Angela Sheffield — AI For Defense Nuclear Nonproliferation — National Nuclear Security Admin (NNSA)” »

Jun 3, 2022

Electrons in a crystal found to exhibit linked and knotted quantum twists

Posted by in categories: climatology, mathematics, quantum physics

As physicists delve deeper into the quantum realm, they are discovering an infinitesimally small world composed of a strange and surprising array of links, knots and winding. Some quantum materials exhibit magnetic whirls called skyrmions—unique configurations described as “subatomic hurricanes.” Others host a form of superconductivity that twists into vortices.

Now, in an article published in Nature a Princeton-led team of physicists has discovered that electrons in can link to one another in strange new ways. The work brings together ideas in three areas of science—condensed matter physics, topology, and —in a new way, raising unexpected questions about the quantum properties of electronic systems.

Topology is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the public’s attention in 2016 when three scientists, including Duncan Haldane, who is Princeton’s Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, were awarded the Nobel Prize for their theoretical prediction of topology in electronic materials.

May 30, 2022

How I make beautiful GRAPHS and PLOTS using LaTeX

Posted by in categories: information science, life extension, mathematics

Andrew Lincoln, your boss?

Vanessa YelenaYour boss is deathist cringe. Let’s see if it stays that way when he’s getting old…

Continue reading “How I make beautiful GRAPHS and PLOTS using LaTeX” »

May 30, 2022

Physicists Discover Strange Array of Links and Knots in Quantum Matter

Posted by in categories: climatology, mathematics, quantum physics

As physicists dig deeper into the quantum realm, they are discovering an infinitesimally small world composed of a strange and surprising array of links, knots, and winding. Some quantum materials exhibit magnetic whirls called skyrmions — unique configurations sometimes described as “subatomic hurricanes.” Others host a form of superconductivity that twists into vortices.

Now, in an article published in the journal Nature, a Princeton-led team of scientists has discovered that electrons in quantum matter can link one another in strange new ways. The work brings together ideas in three areas of science – condensed matter physics, topology, and knot theory – in a new way, raising unexpected questions about the quantum properties of electronic systems.

Topology is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the public’s attention in 2016 when three scientists, including Duncan Haldane, who is Princeton’s Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, were awarded the Nobel Prize for their theoretical prediction of topology in electronic materials.

May 29, 2022

DONATE: Dear all

Posted by in categories: cryptocurrencies, education, finance, mathematics, robotics/AI, space

This March, we, a group of educators, scientists, and psychologists started an educational non-profit (501 c3) Earthlings Hub, helping kids in refugee camps and evacuated orphanages. We are getting lots of requests for help, and are in urgent need to raise funds. If you happen to have any connections to educational and humanitarian charities, or if your universities or companies may be interested in providing some financial support to our program, we would really appreciate that! Please share with everyone who might be able to offer help or advice.

Our advisory board includes NASA astronaut Greg Chamitoff, Professor Uri Wilensky, early math educator Maria Droujkova, AI visionary Joscha Bach, and others.


Support Us The Earthlings Hub works with a fiscal sponsor Blue Marble Space. CREDIT CARD & PAYPAL Please contact us if you would like to via other means, such as checks, stocks, cryptocurrency, or using your Donor Advised Fund: [email protected]

Page 79 of 147First7677787980818283Last